?
Cristian Virdol
Associate Professor
Yonsei University
Office: Mathematics, Room 208
Email: virdol@yonsei.ac.kr
Curriculum Vitae
Papers:
1. C. Virdol, Zeta functions of twisted modular curves, Journal of the Australian Mathematical Society 80 (2006), no. 1, 89-103. pdf
2. C. Virdol, Tate classes and poles of L-functions of twisted quaternionic Shimura surfaces, Journal of Number Theory 123 (2007), no. 2, 315-328. pdf
3. C. Virdol, On L-functions of twisted 3-dimensional quaternionic Shimura varieties, Nagoya Mathematical Journal 190 (2008), 87-104. pdf
4. C. Virdol, Tate classes and L-functions on a product of a quaternionic Shimura surface and a Picard modular surface, Journal of Number Theory 128 (2008), no. 6, 1430-1447. pdf
5. C. Virdol, Moduli problem and points on some twisted Shimura varieties of PEL type, Journal of Number Theory 128 (2008), no. 8, 2492-2504. pdf
6. C. Virdol, On the critical values of L-functions of tensor product of base change for Hilbert modular forms, Journal of Mathematics of Kyoto University 49 (2009), no. 2, 347-357. pdf
7. C. Virdol, On the Birch and Swinnerton-Dyer conjecture for elliptic curves over totally real fields, Proceedings of the American Mathematical Society 137 (2009), no. 12, 4019-4024. pdf
8. C. Virdol, Potential modularity for elliptic curves and some applications, Journal of Number Theory 129 (2009), no. 12, 3109-3114. pdf
9. C. Virdol, On L-functions of twisted 4-dimensional quaternionic Shimura varieties, Journal of Mathematics of Kyoto University 50 (2010), no. 2, 269-282. pdf
10. C. Virdol, Algebraic cycles on a product of two Hilbert modular surfaces, Transactions of the American Mathematical Society 362 (2010), no. 7, 3691-3703. pdf
11. C. Virdol, On l-adic representations attached to Hilbert and Picard modular surfaces, Journal of Number Theory 130 (2010), no. 5, 1197-1211. pdf
12. C. Virdol, On Deligne's conjecture for Hilbert motives defined over totally real fields, Journal of Mathematics of Kyoto University 50 (2010), no. 1, 75-81. pdf
13. C. Virdol, On the critical values of L-functions of base change for Hilbert modular forms, American Journal of Mathematics 132 (2010), no. 4, 1105-1111. pdf
14. C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, Annales de la Faculte des Sciences de Toulouse 19 (2010), no. 3-4, 831-848. pdf
15. C. Virdol, On Mazur's conjecture for twisted L-functions of elliptic curves over totally real or CM fields, Glasgow Mathematical Journal, 53 (2011), no. 1, 207-210. pdf
16. C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, Journal of Number Theory, 131 (2011), no. 4, 681-684. pdf
17. C. Virdol, Tate conjecture for twisted Picard modular surfaces, Journal of Number Theory, 131 (2011), no. 6, 1048-1053. pdf
18. C. Virdol, On the Birch and Swinnerton-Dyer conjecture, Acta Arithmetica, 146 (2011), no. 2, 173-176. pdf
19. C. Virdol, Arbitrary potential modularity for elliptic curves over totally real number fields, Functiones et Approximatio, Commentarii Mathematici, 45 (2011), part 2, 265-269. pdf
20. C. Virdol, Algebraic cycles on compact quaternionic Shimura fourfolds and poles of L-functions, Glasgow Mathematical Journal, 53 (2011), no. 2, 359-367. pdf
21. C. Virdol, Tate conjecture for twisted Siegel modular threefolds, Acta Arithmetica, 149 (2011), no. 3, 297-303. pdf
22. C. Virdol, Base change and the Birch and Swinnerton-Dyer conjecture, Functiones et Approximatio, Commentarii Mathematici, 46 (2012), part 2, 189-194. pdf
23. C. Virdol, On the critical values of L-functions of base change for Hilbert modular forms II, Functiones et Approximatio, Commentarii Mathematici, 47 (2012), part 1, 7-13. pdf
24. C. Virdol, The meromorphic continuation of the zeta function of Siegel modular threefolds over totally real fields, Functiones et Approximatio, Commentarii Mathematici, 47 (2012), part 2, 143-148. pdf
25. C. Virdol, The meromorphic continuation of the zeta function of a product of Hilbert and Picard modular surfaces over CM-fields, Journal of Number Theory, 133 (2013), no.1, 123-130. pdf
26. C. Virdol, The critical values of L-functions of CM-base change for Hilbert modular forms, Functiones et Approximatio, Commentarii Mathematici, 49 (2013), no. 2, 221-227. pdf
27. C. Virdol, On the special values of L-functions of CM-base change for Hilbert modular forms, Glasgow Mathematical Journal, 56 (2014), 57-63. pdf
28. C. Virdol, Tate conjecture for a product of a Shimura curve and a Picard modular surface, Proceedings of the American Mathematical Society, 142 (2014), no. 3, 817-834. pdf
29. C. Virdol, Tate conjecture for some abelian surfaces over totally real or CM number fields, Functiones et Approximatio, Commentarii Mathematici, 52 (2015), no. 1, 57-63. pdf
30. C. Virdol, Cyclic components of abelian varieties (mod wp), Journal of Number Theory, 159 (2016), 426-433. pdf
31. C. Virdol, Drinfeld modules and subfields of division fields, Houston Journal of Mathematics, 42 (2016), no. 1, 211-221. pdf
32. C. Virdol, Titchmarsh divisor problem for abelian varieties of type I, II, III, and IV, Transactions of the American Mathematical Society, 368 (2016), no. 11, 8011-8028. pdf
33. C. Virdol, Artin's conjecture for abelian varieties, Kyoto Journal of Mathematics, 56 (2016), no. 4, 737-743. pdf
34. C. Virdol, Cyclicity and Titchmarsh divisor problem for Drinfeld modules, Kyoto Journal of Mathematics, 57 (2017), no. 3, 505-518. pdf
35. C. Virdol, On the Titchmarsh divisor problem for abelian varieties, Proceedings of the American Mathematical Society, 145 (2017), no. 9, 3681-3687. pdf
36. C. Virdol, The critical values of L-functions of base change for Hilbert modular forms, Hokkaido Mathematical Journal, to appear. pdf
37. C. Virdol, The strong form of Artin's primitive root conjecture (1927) for abelian varieties under GRH, submitted. pdf
38. C. Virdol, The Artin's conjecture for CM abelian varieties, submitted. pdf
39. C. Virdol, The strong form of Artin's primitive root conjecture (1927) for CM elliptic curves, submitted. pdf
40. C. Virdol, The strong form of Artin's primitive root conjecture (1927) for Drinfeld modules, submitted. pdf
41. C. Virdol, On the Artin's primitive root conjecture (1927) for abelian varieties of type I, II, III, and IV, submitted. pdf
