반도체 연구

일시: 2008년 4월 11일
장소: 고려대 자연계 캠퍼스 하나스퀘어
주최: 한국전기전자재료학회
후원: Bruker AXS Korea
포스터 발표 [한나스퀘어 전시실]

2008년 4월 11일 (금) 16:45-17:45

1. Growth and Optical absorption Properties for CdIn$_2$S$_4$ epilayers by hot wall epitaxy ... 13
 총: Seok-jin Yun*, KwangJoon Hong**
 소속: *Department of Chemistry Education, Chosun University,
 **Department of Physics, Chosun University

2. 다구피 실험계합법을 이용한 잉크젯 프린팅 공정분석 ... 15
 총: 문병, 김창은, 장대환*, 김동조*, 문주호*, 김장섭**, 임순권**, 윤일구
 소속: 연세대학교 전기전자공학과, 연세대학교 신소재공학과*, 삼성전자
 주식회사 LCD 기술센터 공정개발그룹

3. 온도에 의존하는 전기적 측정을 이용한 분자 메모리 소자의 전하 이동 메커니즘 분석 ... 17
 총: 최경민, 구자룡, 권상직
 소속: 경원대학교 전자정보통신공학부 전자공학과

4. 습식화학방법에 의해 다양한 기판위에 ZnO 나노구조물의 성장 ... 19
 총: 이상동, 전미진, 신경식, 김상우
 소속: 금오공과대학교 정보나노소재공학

5. MEMS 기반 액체 렌즈의 제작과 특성 분석 ... 21
 총: 서중호, 서상원, 김영목, 성만영
 소속: 고려대학교

6. 기판의 왕복 운동을 이용한 인라인 식각세정장치 내 ITO 식각특성 .. 23
 총: 홍성재, 권상직, 조의식
 소속: 경원대학교 전자정보통신공학부 전자공학과

7. 상온에서의 실리콘 나이트라이드 박막의 종착력 특성 ... 25
 총: 김수연, 권혁주, 김병환
 소속: 세종대학교 전자공학과

8. PLD법에 의해 종착된 MgO mixed BST 박막의 후열처리 효과 ... 27
 총: 김성수, 송상우, 노지영, 고종혁*, 문병무
 소속: 고려대학교, 광운대학교*
다구찌 실험계획법을 이용한 잉크젯 프린팅 공정분석

본 논문은 잉크젯 프린팅 공정 분석에 대해 다루고 있다.

Abstract: In this paper, the Taguchi methodology is used to analyze the effect of process factors of the inkjet printing process on the vacuum pressure with robustness. The vacuum pressure can control the meniscus to determine the jetting condition of the ink in the nozzle. However, it is hard to control vacuum pressure exactly, so it is significant to find the process condition which is robust in the presence of variation. The input factors and levels of inkjet printing process are selected using prescreening and the output responses is diameter, velocity, volume of jetting droplet and diameter of printed droplet.

Key Words: Taguchi, Inkjet printing process, Signal-to-noise ratio(SNR)

1. 서론

최근 LCD, PDP, OLED 등 차세대 디스플레이가 기존 CRT 디스플레이보다 고화소, 고화질 등 위안에 성능과 경쟁력 있는 기기를 내세워 디스플레이 시장에서의 높은 점유율을 차지하게 되었다. 그러나 현재 디스플레이의 성능은 차이가 없어 기기의 시장 점유율이 중요한 요소가 됨에 따라, 다양한 공정 및 공정 단순화에 의한 저격화를 위한 많은 노력들이되고 있다. 이러한 노력 중에 하나로 포토 리소그래피 공정으로 제조하는 컬러필터 등은 디스플레이 부품을 새로운 잉크젯 프린팅 공정으로 대체하려는 움직임이 있다. 기존의 포토 리소그래피 공정은 공정이 복잡하여 단가가 높았지만, 잉크젯 프린팅 공정은 공정이 단순화되고 시간도 단축될 수 있어 단가를 낮출 수 있다. 그러나 현장의 절차의 잉크를 오랜 시간 안정적으로 일정 양을 분사시키는 잉크젯 프린팅 공정은 매세 노출을 통해 수수십의의 잉크의 분사하기 때문에 공정 조건에 민감하며 그에 대한 연구가 진행 중이다.[1,2] 잉크 분야의 영향을 주는 인자는 잉크의 점도, 장비에

2. 실험

잉크 분야에 영향을 주는 인자는 잉크의 점도, 장비에

언어로 인해 인증을 결정하는 여러 파형 인자들

그리고 메니스테스 또는공정을 쓰는 산이나 자료가 되지 않고, 실제 실험에 앞서 분석에 영향을 주는 주 요 인자와 인자의 수준을 할당하기 위해서 prescreening을 실시하였다. 그 결과 건의 점도와 그림 1과 같은 실험에서 3가지 인자(V, T, Tc)를 설정하였다. 인자의 수준은 세 수준으로 정하였다. 반응 파형(Echo pulse)에서 V: 잉크의 종류 수준 4로 고정하였고, T는 Tc의 2배로 고정시켰다. 잉크 점도는 점도 8과는 아닌 잉크를 기준으로 삼고(0/W)여기에 분산편이 무게 원천율, W/P 비율로 네어주어(2/W, 4/W) 점도를 변화 시켜 3개의 수준으로 정하고, 정한 3가지 인자에 대응 수준은 잉크가 안정적으로 나오는 값을 기준으로 3개의 수준을 정하였다. 이렇게 4가지 인자를 이용하여, 서로의 인자간 서로 독립적이고, 영향을 주지 않는다고 가정하고 각 파형 적절범위를 표시하여 표 1과 같이 총 9번의 다구찌 실험 계획을 세웠다.
3. 결과 및 고찰

그림 2는 각각 분사된 잉크 방출물의 지름, 둘레, 속도, 유리 기판에 프린팅 후의 잉크 지름에 대한 SNR의 주효과(main effect)이다. 분사된 잉크 방출물의 지름은 목표(마리필터 제작)에 맞는 크기일 때, SNR은 1에 가까운 경향성을 보인다. SNR은 1에 가까운 경향성을 보인다.

\[
SNR = 10 \log \left(\frac{V}{V_0} \right)
\]

(1)

다구피 실험계획법에서의 SNR은 모평균 제곱의 추정 값은 분산의 추정 값으로 나눈 값으로 의미한다. 즉, SNR이 클수록 결과의 영향이 적고 신뢰(주인자)의 영향이 크다는 것을 의미하기 때문에 값이 클수록 좋다. W/P인자의 경우 첫 번째 수준(0W/P)에서 높은 SNR을 갖고, V, 인자는 세 번째 수준(33V), T, 인자는 세 번째 수준(7us), 그리고 T, 인자의 경우 첫 번째 수준(Bus)에서 높은 SNR를 갖는다.

4. 결론

본 논문에서는 지속적이고 안정적인 잉크 분사를 위해 하는 잉크젯 프린팅 공법에서 공급에 영향을 미치는 잉크 분사 조건을 연구하였다. 다구피 실험계획법을 이용하여 잉크 분사에 영향을 미치는 잉크 분사 공정변수로 실험 계획을 세우고 각 공정변수에 대해 SNR를 이용하여 특성을 분석하였다. 그 결과 SNR을 이용하기 위해서는 대상적으로 도수가 낮고 메니스커스를 잘 조절하기 위해서는 분사 파형 조건의 최적화가 필요함을 확인할 수 있었다.

참고 문헌

