온도 변화에 따른 전형과 극한과 관점을 관기적 특성 변화에 관한 연구

류건호, 윤규원

소재학과 전기전자공학과

Temperature-dependent Electrical Characteristics of Traveling Wave Electro-absorption Modulator

Kun Ho Rheu, Ilgu Yun

Department of Electrical and Electronics Engineering, Yonsei University

Abstract: Recent efforts for high-speed optical devices have been increased to provide mass data transmission and high-speed optical communication. Optical modulator in the transmission link is one of the crucial devices in total optical network system and it can affect a great effect to the total transmission performances. In this paper, traveling wave electro-absorption modulator (TWEAM) is examined to ensure high efficiency in the IR range and wide bandwidth. In addition, the temperature-dependence electrical characteristics of TWEAM is investigated. Temperature dependent property variations were characterized using I-V and C-V measurements.

Key Words: TWEAM, I-V characteristics, C-V characteristics, Optical devices

1. 서 론

최근 빅 데이터 시장은 대량형 고속 데이터 전송을 위

해 전송, 변조, 수신 부분에서 보다 진보된 전자 소자들을

필요로 하고 이를 위해 고속 동축과 넓은 대역폭을 가지

는 통신소자들이 발전하고 꾸준히 제외가 되고 있다. 특히 변조기는 통

신소자와 밀접한 관련이 있으며 변조자는 소자로 전달

시스템 성능에 있어 중요한 역할을 하며, C-10만의 변조가 중에서 전자 동축 변조(TCEAM)는 고속

적 특성과 넓은 동축 범위로 주목받고 있다. 그 외에 대역폭이 광학적 진동과의

계층에 의해 바람직한 고주파 응답에 필요로 하는 변조가 가능하다

TWEAM은 전자 변조와 InGaAsP 발광 층과 MQW 층

을 구조화하여 RNAN 구조로 변조를 생성한다. 변조의 소자 구조의 경우 동축, 중속, 동축용 특성을 얻게 하기

때문에, TWEAM을 이용하여 소자 구조 및 길이에

대한 활용가능성을 확보해야 하는 혁신적 설계를 통한

TWEAM의 동축 침기주파수(high temperature storage test)의

현상으로 TWEAM의 입자적 현상 설명을 이용하였다.

2. 소자 구조 및 실험 방법

본 연구에서는 실험보고자와는 TWEAM의 동축과 내부

구조가 그림 1과 같다. 변조체계는 InP기반이며 TWEAM

의 active core region의 구조이며, 이 정적 0.5um의

n-InP 다결 합성층, 0.5um InP p+ 다결 합성층, n-1GaAsP 전

상형층, 종류 및 다결 합성층의 MQW로 구조화한다. MQW는 80Å의

이하의 높이를 가진 구조로, MQW는 12A의 장에 보다 높은 용량

(Wo)를 구조화한다. 통상형 모형이 아닌 100um이고 금속

택기 2-3um이고 금속과 이는 1.5um보다 두께로 인하지

n-1GaAsP와 n+1InP의 다결 합성층을 구성하는데 수용

영역 (passive region)은 BUE (buffer ion etching)로

MOCVD (Metal Organic Chemical Vapor Deposition)에 의해

생성되었다. 이후로 p+1GaAsP와 같은 비료에 의해 정화되

서 있다[3].

그림 1. Chip 형태의 TWEAM과 내부 구조

실현은 그림 2와 같은 형광 장비를 통해 400˚C 온도

다음에 TWEAM의 전기적 특성은 변조, 변경, 전압에

관련된 특성의 변화를 가지며 실험되었다. Bar 형태의 TO

package 유 TWEAM을 실험에 사용하여 온도와 시간에

전기적 특성의 변화를 관찰하였다. Bar 형태의 소자

의 경우 고정의 실험에 실험 온도의 다른 스트레스

모양 및 동적 영향을 실험하기 위해 소자 는 1cm 단위

으로 변경하였다.
3. 결과 및 고찰
TWEAM의 고온 저전 상에 있어서 음도변화에 따른 잔류-전류 특성의 변화를 살펴보았다. 그림 3의 곡선의 결과 음도가 증가함에 따라 전류-전압 특성은 모두 증가하는 경향을 보였다. 이것은 적절하게 여기는 excess carrier 해양에 유의하는 현상을 관찰하였다.

그림 3. 음도 변화에 따른 TWEAM의 전류-전압 특성

고온 상태에서 저전압 부근의 전류-전압 특성은 전력적인 영역에서 보였다. 그림 4는 고온 상태에 따른 전류-전압 특성을 나타낸다. 일반적으로 고온 상태에서의 전류-전압 특성은 증가하는 것은 누설 전류의 증가로 인한 것으로 알려져 있다 [4].

그림 4. 고온 저전 실험 결과 TWEAM의 전류-전압 특성

 누설 전류 증가의 원인을 찾아보기 위해 TWEAM의 접합물에 따른 변화를 측정하여 이를 통해 고온 상태에서 빠른 다이오드의 공정 영역에서의 free carrier 농도의 변화를 추정하였다. 그림 5의 곡선에 보인 찬란한 상에서 이와 지명한 free carrier의 농도는 금속 영역의 안정성에 영향을 미치며 이는 고온 상태에서의 전류-전압 특성의 변화를 설명한다. 이를 통해 적절한 접합물로 이러한 도전력학적 특성은 더욱 중요해질 것이다. 이러한 특성은 DPA의 토목성과 같이 다양한 접합물에 적용할 수 있는 것으로 보인다 [5].

4. 결론
TWEAM의 음도 변화에 따른 전기적 특성 변화에 대한 실험을 수행하였다. 실험 결과와 고온 상태에서의 TWEAM 전류-전압 특성은 일반적으로 전기적으로 이온과 다른 도전여울의 이온으로 인한 누설 전류의 증가 때문이라는 것을 알 수 있었다.

참고 문헌