Geometric Simplicity Theory

Byunghan Kim

Dept. Math. Yonsei University

ALC 10
September 1-6, 2008
Outline

1. n-amalgamation
2. \mathcal{M}^{\geq}
3. n-simplicity
4. Fields in simple theories
Geometric Simplicity Theory

Byunghan Kim

Dept. Math. Yonsei University

ALC 10
September 1-6, 2008
Let \mathcal{C}_T be a category of the algebraically closed substructures of \mathcal{M}. Recall that any poset is a category. For $n \in \omega$, write $\mathcal{P}(n)^- := \mathcal{P}(n) - \{n\}$.
Let \mathcal{C}_T be a category of the algebraically closed substructures of \mathcal{M}. Recall that any poset is a category. For $n \in \omega$, write $\mathcal{P}(n)^- := \mathcal{P}(n) - \{n\}$.

Definition

- A functor $a : \mathcal{W}(\subseteq \mathcal{P}(n)) \to \mathcal{C}_T$ is said to be independence preserving (i.p.) if
 1. for any $w_0, w_1 \subseteq w \in \mathcal{W}$, $a_{w_0 \downarrow a_{w_0 \cap w_1}} a_{w_1}$ holds within a_w;
 2. for $w \in \mathcal{W}$, $a_w = acl(\bigcup \{a_{\{i\}} \mid i \in w\})$.

- We say T has n-amalgamation if any i.p. functor $a : \mathcal{P}(n)^- \to \mathcal{C}_T$ can be extended to i.p. $\hat{a} : \mathcal{P}(n) \to \mathcal{C}_T$.

3-amalgamation is type-amalgamation (the Independence Theorem). Hence any simple T has 3-amalgamation.
3-amalgamation

Byunghan Kim

Geometric Simplicity Theory
4-amalgamation
4-amalgamation over acl base set
T stable.

Then n-amalgamation always holds over any model. But n-amalgamation need not hold if the base set is not a model!
Then n-amalgamation always holds over any model. But n-amalgamation need not hold if the base set is not a model!

Example

Consider $[A]^2 = \{\{a, b\}|a \neq b \in A\}$ where A infinite. Let $B = [A]^2 \times \{0, 1\}$ where $\{0, 1\} = \mathbb{Z}_2$. Also let $E \subseteq A \times [A]^2$ be a membership relation, and let P be a subset of B^3 such that $((w_1, \delta_1)(w_2, \delta_2)(w_3, \delta_3)) \in P$ iff there are distinct $a_1, a_2, a_3 \in A$ such that for $\{i, j, k\} = \{1, 2, 3\}$, $w_i = \{a_j, a_k\}$, and $\delta_1 + \delta_2 + \delta_3 = 0$. Let $M = (A, [A]^2, B; E, P; \text{Pr}_1 : B \to [A]^2)$. Then M is stable.
The stable example does not have 4-amalgamation over $\emptyset = \text{acl}(\emptyset)$.

Why

Note first that $\text{dcl}(\emptyset) = \text{acl}(\emptyset)$, and for $a \in A$, $\text{dcl}(a) = \text{acl}(a)$. Now choose distinct $a_1, a_2, a_3, a_4 \in A$. For $\{i, j, k\} \subseteq \{1, 2, 3, 4\}$, fix an enumeration $\overline{a_i a_j} = (b_{ij}, \ldots)$ of $\text{acl}(a_i a_j)$ where $b_{ij} = (\{a_i, a_j\}, \delta) \in B = [A]^2 \times \{0, 1\}$. Let $r_{ij}(x_{ij}) = \text{tp}(\overline{a_i a_j})$, and let x_{ij}^1 be the variable for b_{ij}. Note that $b_{ij} = (\{a_i, a_j\}, \delta)$ and $b_{ij}' = (\{a_i, a_j\}, \delta + 1)$ have the same type over $a_i a_j$. Hence there is $\overline{(a_i a_j)'} = (b_{ij}', \ldots)$ also realizing $r_{ij}(x_{ij})$. Therefore we have complete types $r_{ijk}(x_{ijk})$, $r_{ijk}'(x_{ijk}')$ both extending $r_{ij}(x_{ij}) \cup r_{ik}(x_{ik}) \cup r_{jk}(x_{jk})$ realized by some enumerations of $\text{acl}(a_i a_j a_k)$ such that $P(x_{ij}^1 x_{ik}^1 x_{jk}^1) \in r_{ijk}$ whereas $\neg P(x_{ij}^1 x_{ik}^1 x_{jk}^1) \in r_{ijk}'$. Then it is easy to see that $r_{123} \cup r_{124} \cup r_{134} \cup r_{234}'$ is inconsistent.
Resolution

In his recent preprint [http://arxiv.org/abs/math/0603413v1], Hrushovski showed that if $\mathcal{M} \models T$ is stable, then there is $CM^* \models T^*$ in $\mathcal{L}^*(\supseteq \mathcal{L})$ such that \mathcal{M} is stably embedded into \mathcal{M}^*, and \mathcal{M}^* has n-amalgamation over any acl bases. We may write \mathcal{M}^* as \mathcal{M}^{geq}.

In short, like \mathcal{M}^{eq}, wlog, we can assume $\mathcal{M} = \mathcal{M}^{geq}$ when T is stable.
Resolution

In his recent preprint [http://arxiv.org/abs/math/0603413v1], Hrushovski showed that if $\mathcal{M} \models T$ is stable, then there is $CM^* \models T^*$ in $\mathcal{L}^*(\supseteq \mathcal{L})$ such that \mathcal{M} is stably embedded into \mathcal{M}^*, and \mathcal{M}^* has n-amalgamation over any acl bases. We may write \mathcal{M}^* as \mathcal{M}^{geq}.

In short, like \mathcal{M}^{eq}, wlog, we can assume $\mathcal{M} = \mathcal{M}^{geq}$ when T is stable.

Open Problem

Can we construct such \mathcal{M}^* for simple T? If yes, then possibly we can remove the assumption of 4-amalgamation in the group configuration theorem.
In the following notions of n-simplicity and $K(n)$-simplicity, for convenience, we use imprecise definitions good enough however representing the essence of notions. Also for convenience, we describe notions only over $\emptyset = acl(\emptyset)$.
In the following notions of n-simplicity and $K(n)$-simplicity, for convenience, we use imprecise definitions good enough however representing the essence of notions. Also for convenience, we describe notions only over $\emptyset = acl(\emptyset)$.

Fact

Let $I = \langle a_i \mid i \in \omega \rangle$ be Morley, and let $b \downarrow a_0$. Then there is $b' \equiv_{a_0} b$ such that I is Morley over b' and $b' \downarrow I$.

Above fact is a particular case of 3-amalgamation (IT), and used crucially in showing IT for simple T.
Definition

T is $K(n)$-simple if for $k \leq n$ and any Morley $l = \langle a_i \mid i \in \omega \rangle$, whenever $l_k = \langle a_i \mid i < k \rangle$ is Morley over b with $b \downarrow l_k$, there is $b' \equiv_{l_k} b$ such that l is Morley over b' and $b' \downarrow l$.

Definition

- T is $K(n)$-simple if for $k \leq n$ and any Morley $l = \langle a_i \mid i \in \omega \rangle$, whenever $l_k = \langle a_i \mid i < k \rangle$ is Morley over b with $b \downarrow l_k$, there is $b' \equiv_{l_k} b$ such that l is Morley over b' and $b' \downarrow l$.

- T is n-simple if for $k \leq n$ and any Morley $l = \langle a_i \mid i \leq k \rangle$, whenever $l_k = \langle a_i \mid i < k \rangle$ is Morley over b with $b \downarrow l_k$, there is $b' \equiv_{l_k} b$ such that l is Morley over b' and $b' \downarrow l$.
Definition

- T is $K(n)$-simple if for $k \leq n$ and any Morley $I = \langle a_i \mid i \in \omega \rangle$, whenever $I_k = \langle a_i \mid i < k \rangle$ is Morley over b with $b \downarrow I_k$, there is $b' \equiv_{I_k} b$ such that I is Morley over b' and $b' \downarrow I$.

- T is n-simple if for $k \leq n$ and any Morley $I = \langle a_i \mid i \leq k \rangle$, whenever $I_k = \langle a_i \mid i < k \rangle$ is Morley over b with $b \downarrow I_k$, there is $b' \equiv_{I_k} b$ such that I is Morley over b' and $b' \downarrow I$.

- We say T has n-CA if T has k-amalgamation for all $k \leq n$.
Definition

- T is $K(n)$-simple if for $k \leq n$ and any Morley $I = \langle a_i | i \in \omega \rangle$, whenever $I_k = \langle a_i | i < k \rangle$ is Morley over b with $b \downarrow I_k$, there is $b' \equiv_{I_k} b$ such that I is Morley over b' and $b' \downarrow I$.
- T is n-simple if for $k \leq n$ and any Morley $I = \langle a_i | i \leq k \rangle$, whenever $I_k = \langle a_i | i < k \rangle$ is Morley over b with $b \downarrow I_k$, there is $b' \equiv_{I_k} b$ such that I is Morley over b' and $b' \downarrow I$.
- We say T has n-CA if T has k-amalgamation for all $k \leq n$.

Both n-simplicity, $K(n)$-simplicity are particular cases of $(n + 2)$-CA.

Question

Are those 3 notions equivalent?

simple = 1-simple = $K(1)$-simple = 3-amalgamation = 3-CA
Yes

(Kolesnikov) 2-simple = K(2)-simple = 4-amalgamation = 4-CA
<table>
<thead>
<tr>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kolesnikov) 2-simple = K(2)-simple = 4-amalgamation = 4-CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes and No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K, Kolesnikov, Tsuboi) Yes:</td>
</tr>
<tr>
<td>(n)-simple = ((n + 2))-CA</td>
</tr>
</tbody>
</table>
Yes

(Kolesnikov) 2-simple = K(2)-simple = 4-amalgamation = 4-CA

Yes and No

(K, Kolesnikov, Tsuboi) Yes:
\(n \)-simple = \((n + 2)\)-CA

No: For each \(n \geq 3 \), there is an example of \(K(n) \)-simple but not having \((n + 2)\)-CA.
\(\mathcal{L} = \{ R \} \), \(R \) is a \(n \)-ary relation.

\[\mathcal{K} := \{ A \mid A \text{ is a finite } R\text{-structure; } R \text{ is symmetric and irreflexive; for any } A_0 \subseteq A \text{ with } |A_0| = n + 1, \text{ the no. of } n\text{-element subsets of } A_0 \text{ holding } R \text{ is even } \} \]

The Fraïssé limit of \(\mathcal{K} \) is the simple \(\omega \)-categorical example.
Stable
Stable | Simple

Byunghan Kim
Dept. Math. Yonsei University

Geometric Simplicity Theory
Byunghan Kim

Geometric Simplicity Theory

- n-amalgamation
- \mathcal{M}^{eq}
- n-simplicity

Fields in simple theories

Diagram:

- Stable
- Superstable
- Simple
Fields in simple theories

- n-amalgamation
- \mathcal{M}^{eq}
- n-simplicity

Geometric Simplicity Theory

Byunghan Kim
Dept. Math. Yonsei University
Fields in simple theories

\[n\text{-amalgamation} \quad M_{\text{eq}} \quad n\text{-simplicity} \]

Byunghan Kim
Dept. Math. Yonsei University

Geometric Simplicity Theory
Fields in simple theories

n-amalgamation

$M \mathrel{\models} n$-simplicity

Byunghan Kim
Dept. Math. Yonsei University

Geometric Simplicity Theory
Fields in simple theories

n-amalgamation

\mathcal{M}^geq

n-simplicity

Geometric Simplicity Theory

Byunghan Kim
Dept. Math. Yonsei University

Stable
SCF
Superstable
ACF, DCF
V.Sp

Simple
PAC
Supersimple
Byunghan Kim
Dept. Math. Yonsei University

Geometric Simplicity Theory

- **Stable**
 - SCF
 - ACF, DCF
 - V.Sp

- **Superstable**
 - ACF, DCF
 - V.Sp

- **Simple**
 - PAC
 - Psf, V.Sp with forms
Definition

F a field.

- F is said to be PAC if any absolutely irreducible algebraic set V defined over F has F-rational point.
- F is *pseudo-finite* if it is an infinite field of the theory of all finite fields.
- An extension field E of F is *separable* if it is algebraic over F, and for each $e \in E$, $\text{irr}_F(e)$ has no multiple roots.
- F *perfect* if every algebraic extension is separable; equivalently either $\text{Char}(F) = 0$ or $x \mapsto x^p$ where $p = \text{Char}(F) > 0$ is onto.
- F is *bounded* for each $n > 1$, there are only finitely many separably algebraic extensions of degree n.
- F is *separably closed* if it has no proper separable extension.
Fact

\(F \) PAC.

- (Chatzidakis) \(F \) is simple iff \(F \) is bounded.
- (Hrushovski, Pillay, Poizat) \(F \) is supersimple iff \(F \) is perfect and bounded.
- (Duret, Wood) \(F \) is stable iff \(F \) is separably closed.
Fact

\(F \) PAC.

- (Chatzidakis) \(F \) is simple iff \(F \) is bounded.
- (Hrshovski, Pillay, Poizat) \(F \) is supersimple iff \(F \) is perfect and bounded.
- (Duret, Wood) \(F \) is stable iff \(F \) is separably closed.

Historically the first simple unstable fields studied seriously are pseudo-finite fields by J. Ax in late 60s.
Historically the first simple unstable fields studied seriously are pseudo-finite fields by J. Ax in late 60s.

Fact

\(F \text{ PAC.} \)

- (Chatzidakis) \(F \) is simple iff \(F \) is bounded.
- (Hrshovski, Pillay, Poizat) \(F \) is supersimple iff \(F \) is perfect and bounded.
- (Duret, Wood) \(F \) is stable iff \(F \) is separably closed.

Fact

(Ax)

A field \(F \) is pseudo-finite iff
1. it is perfect
2. it is PAC, and
3. for each \(n \) it has exactly one algebraic extension of degree \(n \)

Hence pseudo-finite fields are unstable supersimple (of SU-rank 1).
Fact

• (Macintyre; Cherlin, Shelah) Superstable division ring is an algebraically closed field.
• (Pillay, Scanlon, Wagner) Supersimple division ring is a field.
Fact

- (Macintyre; Cherlin, Shelah) Superstable division ring is an algebraically closed field.
- (Pillay, Scanlon, Wagner) Supersimple division ring is a field.

Open Problem

- Is any stable field separably closed?
- Is any supersimple field PAC?