A propositional language consists of

1. Connective symbols: \neg, \rightarrow
2. Punctuation symbols: $(,)$
3. Non-empty set \mathcal{L}.

Elements of \mathcal{L} are called sentence symbols. (Sentence symbols will be denoted by $p, q, r,...$) An \mathcal{L}-expression is any finite sequence of symbols from \mathcal{L} together with connective and punctuation symbols. For example $\neg(pq) \rightarrow (\neg(p \rightarrow q)) \rightarrow (\neg q)$ are both \mathcal{L}-expressions where $p, q \in \mathcal{L}$. (An expression will be denoted by a lower-case Greek letter. $\text{Exp}(\mathcal{L})$ denotes the set of all \mathcal{L}-expressions. When underlying \mathcal{L} is clear, we often omit it.) Now let us single out a set of sentences among that of expressions.

Definition 1.1. An \mathcal{L}-expression ϕ is called \mathcal{L}-sentence if there is a formation sequence of ϕ. Namely, there is a finite sequence of expressions $\phi_0, ..., \phi_n$ with $\phi_n = \phi$ such that for all $i \leq n$, either

1. $\phi_i = p \in \mathcal{L}$, or
2. $\phi_i = (\neg \phi_j)$ for $j < i$, or
3. $\phi_i = (\phi_j \rightarrow \phi_k)$ for $j, k < i$.

For example, in above the former one is not a sentence while the latter one is. From now on, $\text{Sent}(\mathcal{L})$ denotes the set of all sentences of \mathcal{L}.

Fact 1.2. Suppose that \mathcal{S}' is a set of expressions containing \mathcal{L} and closed under connectives, i.e.

1. $\mathcal{L} \subseteq \mathcal{S}'$,
2. If $\varphi, \psi \in \mathcal{S}'$, then both $\neg \varphi$ and $(\varphi \rightarrow \psi)$ are in \mathcal{S}'.

Then $\text{Sent}(\mathcal{L}) \subseteq \mathcal{S}'$, and $\text{Sent}(\mathcal{L})$ also satisfies (1) and (2), i.e. $\text{Sent}(\mathcal{L})$ is the smallest set among all the sets of expressions satisfying (1) and (2).
The fact is frequently used when we prove that a certain property holds for all sentences, by showing that the set of expressions satisfying the property contains L and closed under connectives.

Exercise

(1) Show that no sentence begins with \neg.

(2) For a sentence φ, show that $l(\varphi) = r(\varphi)$ where $l(\varphi)$ ($r(\varphi)$, resp.) is the number of left (right, resp.) parenthesis in φ.

(3) Let φ be a sentence of length n. Show that for $1 \leq k < n$, $r(\varphi, k) < l(\varphi, k)$, where $l(\varphi, k)$ ($r(\varphi, k)$, resp.) is the number of left (right, resp.) parenthesis among the first k symbols of φ.

• Unique Readability

Each sentence χ (of L) has one and only one of following forms:

1. p for $p \in L$,
2. $\neg \varphi$ for unique sentence φ,
3. $(\phi \rightarrow \psi)$ for unique sentences ϕ, ψ.

(Use previous Exercise to verify this.)

Unique Readability allows us to recursively define ‘unique’ function f on $\text{Sent}(L)$ from the following information:

1. The rule of assigning $f(p)$ for $p \in L$ is given.
2. The rule of assigning $f(\neg \psi)$ from $f(\phi)$ is given.
3. The rule of assigning $f(\phi \rightarrow \varphi)$ from $f(\phi), f(\varphi)$ is given.

For example, there is a unique rank function $rk : \text{Sent}(L) \rightarrow \omega$ satisfying the following:

1. $rk(p) = 0$ for $p \in L$,
2. $rk(\neg \psi) = 1 + rk(\psi)$,
3. $rk(\phi \rightarrow \varphi) = 1 + \max\{rk(\phi), rk(\varphi)\}$.

• Convention of Abbreviation

Drop outermost pair of parentheses.

Drop further by accepting ‘linking’ conventions: \neg links more strongly than \rightarrow, \lor, \land, \leftrightarrow, and \lor, \land link more strongly than \rightarrow, \leftrightarrow, where

$\alpha \lor \beta := \neg(\alpha \rightarrow \neg \beta)$
$\alpha \land \beta := (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.

For example, $\neg \varphi \lor \psi \rightarrow \chi$ is $(((\neg \varphi) \lor \psi) \rightarrow \chi)$.
Additionally, when → is used repeatedly, grouping is to the right: \(p \rightarrow q \rightarrow r \rightarrow s \) is equivalent to \(p \rightarrow (q \rightarrow (r \rightarrow s)) \).

- Truth Assignment

A truth assignment \(\nu \) for a language \(\mathcal{L} \) is a function \(\nu : \mathcal{L} \rightarrow \{T, F\} \). By above, there is a unique extension \(\bar{\nu} \) of \(\nu \) on \(\text{Sent}(\mathcal{L}) \) such that
\[
\bar{\nu}(\neg \phi) = T \text{ iff } \bar{\nu}(\phi) = F, \\
\bar{\nu}(\phi \rightarrow \psi) = F \text{ iff } \bar{\nu}(\phi) = T \text{ and } \bar{\nu}(\psi) = F.
\]

A sentence \(\alpha \) is said to be tautology if \(\bar{\nu}(\alpha) = T \) for every truth assignment \(\nu \). A set \(\Sigma \) of sentences (or a single sentence \(\alpha \)) is said to be satisfiable if for some truth assignment \(\nu \), \(\bar{\nu}(\alpha) = T \) for all \(\alpha \in \Sigma \). Sentences \(\alpha, \beta \) are called tautologically equivalent if \(\bar{\nu}(\alpha) = \bar{\nu}(\beta) \) for every truth assignment \(\nu \).

Remark 1.3. (1) \(\alpha \) is not satisfiable iff \(\neg \alpha \) is tautology. (But a satisfiable sentence need not be tautology.)

(2) \(\alpha, \beta \) are tautologically equivalent iff \(\alpha \iff \beta \) is a tautology.

(3) De Morgan’s law: \(\neg(\varphi \land \psi) \iff \neg \varphi \lor \neg \psi; \neg(\varphi \lor \psi) \iff \neg \varphi \land \neg \psi \) are both tautology.

A literal is a sentence which is a sentence symbol, or the negation of a sentence symbol. We say a sentence \(\sigma \) is in disjunctive normal form (d.n.f.) if \(\sigma \) is a disjunction of conjunction of literals, e.g. \((p \land \neg q \land r) \lor \neg r \lor (s \land p) \).

Theorem 1.4. For any sentence \(\varphi \), there is a sentence \(\psi \) in d.n.f. such that \(\varphi, \psi \) are tautologically equivalent.

A Boolean function is an operation on \(\{T, F\} \), i.e. a mapping from \(\{T, F\}^n \) to \(\{T, F\} \) for some \(n \). We say a Boolean function \(h : \{T, F\}^n \rightarrow \{T, F\} \) is realized by a sentence \(\varphi \), if \(h(\alpha_1, \ldots, \alpha_n) = \bar{\nu}_{\alpha_1, \ldots, \alpha_n}(\varphi) \), where \(\nu_{\alpha_1, \ldots, \alpha_n}(A_i) = \alpha_i \) (\(\alpha_i \in \{T, F\} \), \(A_i \) is the \(i \)th sentence symbol in \(\varphi \)). A sentence realizes a Boolean function. Conversely, by the proof of previous theorem, every Boolean function is realized by some sentence in d.n.f.

A set \(H \) of connectives is called complete if every Boolean function is realized by some sentence with all connectives in \(H \), equivalently if every sentence is tautologically equivalent to a sentence with all connectives in \(H \).

Corollary 1.5. \(\{\neg, \land \lor\}, \{\neg, \land\}, \{\neg, \lor\} \) are all complete.

The connective symbol \(| \) is called nand, and \(\varphi | \psi \) means \(\neg(\varphi \land \psi) \). The symbol \(\downarrow \) is called nor, and \(\varphi \downarrow \psi \) means \(\neg(\varphi \lor \psi) \).
Corollary 1.6. The connectives \{↓\}, \{|\} are all complete.

- Compactness

Recall a set \(\Sigma\) of sentences is said to be **satisfiable** if for some truth assignment \(\nu\), \(\bar{\nu}(\alpha) = T\) for all \(\alpha \in \Sigma\). The set \(\Sigma\) is **finitely satisfiable** if every finite subset of \(\Sigma\) is satisfiable.

Theorem 1.7. (Compactness) For any set \(\Sigma\) of sentences, \(\Sigma\) is finitely satisfiable iff \(\Sigma\) is satisfiable.

It suffices to show if \(\Sigma\) is finitely satisfiable, then \(\Sigma\) is satisfiable. The proof takes the following steps.

1. If \(\Gamma\) is a finitely satisfiable set of sentences and \(\sigma\) is a given sentence, then \(\Gamma \cup \{\sigma\}\) or \(\Gamma \cup \{\neg \sigma\}\) is finitely satisfiable.
2. Given finitely satisfiable \(\Sigma\), there is finitely satisfiable \(\Delta(\supseteq \Sigma)\) such that for every sentence symbol \(p \in \mathcal{L}\), either \(p \in \Delta\) or \(\neg p \in \Delta\).
3. Define \(\nu : \mathcal{L} \to \{T, F\}\) such that,
 \[
 \nu(p) = \begin{cases}
 T, & \text{if } p \in \Delta \\
 F, & \text{if } \neg p \in \Delta.
 \end{cases}
 \]
 Show that \(\bar{\nu}\) satisfies \(\Delta\).

- Soundness and completeness

Definition 1.8. Let \(\Sigma\) be a set of sentences, and \(\alpha\) be a sentence.

1. The notation \(\Sigma \models \alpha\) (called, \(\alpha\) is a tautological consequence of \(\Sigma\) (a semantic notion)) means that if \(\Sigma\) is satisfied by some truth assignment \(\nu\), then the \(\nu\) satisfies \(\alpha\) too.
2. A deduction (or proof) from \(\Sigma\) is a finite sequence \(\langle \alpha_0, ..., \alpha_m \rangle\) of sentences such that, for each \(i \leq m\), \(\alpha_i \in \Sigma\), or \(\alpha_i\) is a tautology, or \(\alpha_i\) follows from \(\alpha_j, \alpha_k\) for some \(j, k < i\) by Modus Ponens (i.e. \(\alpha_k\) is \(\alpha_j \to \alpha_i\)).
3. The notation \(\Sigma \vdash \alpha\) (called, \(\alpha\) is provable from \(\Sigma\) (a syntactic notion)) means that there is a deduction \(\langle \alpha_0, ..., \alpha_m \rangle\) from \(\Sigma\) with \(\alpha_m = \alpha\).

Similarly to Fact 1.2, one can see that \(\{\alpha | \Sigma \vdash \alpha\}\) is the smallest set among sets containing \(\Sigma\) with all tautologies and closed under Modus Ponens.

Theorem 1.9. (Soundness and Completeness) \(\Sigma \vdash \alpha\) iff \(\Sigma \models \alpha\).
A 1st-order language \mathcal{L} consists of

(1) Logical symbols
 (a) Punctuation symbols: (,)
 (b) Connectives: \neg, \to
 (c) Quantifier: \forall
 (d) Equality symbol: = (can be considered as binary predicate symbol.)
 (e) Variables: $v_0, v_1, v_2, ...$

(2) Nonlogical symbols
 (a) For each $n \geq 1$, a set (possibly empty) of n-ary function symbols.
 (b) A set (possibly empty) of constant symbols.
 (c) For each $n \geq 1$, a set (possibly empty) of n-ary predicate symbols.

Every 1st-order language has the fixed logical symbols. Hence to specify \mathcal{L}, we may identify \mathcal{L} to be only the collection of nonlogical symbols. While that \mathcal{L} is finite (or finite language \mathcal{L}) means \mathcal{L} has finitely many nonlogical symbols, $\text{Card}(\mathcal{L})$ denotes the cardinality of \mathcal{L} including logical symbols, hence always infinite. We often omit to indicate \mathcal{L} when the language \mathcal{L} is fixed.

We define recursively terms, atomic formulas and formulas (of \mathcal{L}).

Term:
 (1) Variable v_i and constant symbol c are terms.
 (2) If f is an n-ary function symbol, and $\tau_1, ..., \tau_n$ are terms, then $f\tau_1...\tau_n$ is a term.
 (3) Nothing else is a term unless it can be obtained by finitely many applications of (1) and (2).

Atomic formula: Suppose that R is an n-ary predicate symbol (possibly the binary predicate $=$), and $\tau_1, ..., \tau_n$ are terms. Then $R\tau_1...\tau_n$ is an atomic formula.

Formula:
 (1) Every atomic formula is a formula.
 (2) If α, β are formulas, then so are ($\neg \alpha$), ($\alpha \rightarrow \beta$) and $\forall v_j \alpha$ ($j \in \omega$).
 (3) Nothing else is a formula unless it can be obtained by finitely many applications of (1) and (2).

In the following, upper-case Greek letters denote sets of formulas of \mathcal{L}, lower-case Greek letters denote formulas of \mathcal{L}; $x, y, ..$ denote arbitrary variables, $c, d, ..$ constant and τ, or $t, u, ..$ terms.

• Unique readability and abbreviation
Each term τ (of L) has one and only one of following forms:

1. a unique constant c;
2. variable v_i for unique i;
3. $f\tau_1...\tau_m$ for unique m and unique m-ary function symbol f, and unique terms $\tau_1, ..., \tau_m$.

Each formula χ (of L) has one and only one of following forms:

1. an atomic formula $P\tau_1...\tau_n$ for unique n, and unique n-ary predicate P, and unique terms $\tau_1, ..., \tau_n$;
2. $(\neg \varphi)$ for unique formula φ;
3. $(\phi \rightarrow \psi)$ for unique formulas ϕ, ψ;
4. $\forall v_i \varphi$ for unique i and φ.

Unique readability enables us to define recursively unique function on the set of all terms, or formulas (of L).

Given formula φ, assign a set $fv(\varphi)$ (can be \emptyset) of variables as follows:

1. If a formula α is atomic, then $fv(\alpha)$ is a set of all variables in φ.
2. $fv((\neg \beta)) = fv(\beta)$
3. $fv((\alpha \rightarrow \beta)) = fv(\alpha) \cup fv(\beta)$
4. $fv(\forall v_i \alpha) = fv(\alpha) \setminus \{v_i\}$.

If $x \in fv(\alpha)$, then we say that the variable x occurs free (or is free) in α. A sentence is a formula having no free variables. We often write $\varphi(x_1, ..., x_n)$ to represent $fr(\varphi) = \{x_1, ..., x_n\}$ in order.

For abbreviation of notation, first follow the rule described in Propositional Logic.

Write $\tau = \mu$ (or $\tau \neq \mu$) instead of $= \tau\mu$ (or $\neg = \tau\mu$), and also for other familiar binary predicate or function symbols such as $<, \times,...$

$\exists x \varphi$ stands for $\neg \forall x (\neg \varphi)$.
$\forall x, \exists x$ link more strongly than binary connectives. For example, $\forall x \neg \varphi \rightarrow \psi$ is $(\forall x (\neg \varphi) \rightarrow \psi)$, not $\forall x (\neg \varphi \rightarrow \psi)$.

$\forall x_1...x_n \varphi$ stands for $\forall x_1...\forall x_n \varphi$ (similarly to $\exists x_1...x_n \varphi$).

3. Structure (or model) and satisfaction

Let L be a first-order language. An L-structure (or model) M is a nonempty set (denoted by $|M|$), called the universe of the model M, equipped with the following interpretations for non-logical symbols.

1. For each constant symbol c, there corresponds an element $c^M \in |M|$.
2. For each n-ary function symbol f, there corresponds an n-ary function $f^M : |M|^n \rightarrow |M|$.
(3) For each n-ary predicate symbol P, there corresponds an n-ary relation $P^M \subseteq |M|^n$.

For equality symbol $=$ in \mathcal{L}, $=^M$ must be an equality relation in $|M|$, i.e. $=^M = \{(a, b) \in |M|^2 : a = b\}$. For n-ary predicate P and $a_1, \ldots, a_n \in |M|$, $P^M(a_1, \ldots, a_n)$ means $(a_1, \ldots, a_n) \in P^M$.

For example, for the language of ordered field $\mathcal{L}_{orf} = \{+, -, \times, 0, 1, <\}$ with binary function symbols $+, -, \times$, two constant symbols $0, 1$, and binary predicate $<$, the real field \mathbb{R} with canonical interpretations is an \mathcal{L}_{orf}-model. In fact $M = \{(a, b), +^M, -^M, \times^M, 0^M, 1^M, <^M\}$ with some functions $+^M, -^M, \times^M : \{(a, b)^2 \to \{a, b\}, \text{some subset } <^M \subseteq \{a, b\}^2 \text{ and say } 0^M = a, 1^M = b$, is an \mathcal{L}_{orf}-model too.

Now we shall define the notation $M \models \varphi[s]$ (φ is realized (or satisfied) by s in M, or M satisfies φ with s) for (\mathcal{L})-structure M, formula φ, and $s : \mathcal{V} \to |M|$ where $\mathcal{V} = \{v_0, v_1, \ldots\}$, the set of all variables.

First, let us extend the function s to \bar{s} on \mathcal{T}, the set of all terms:

1. $\bar{s}(v_i) = s(v_i)$.
2. $\bar{s}(c) = c^M$.
3. $\bar{s}(f \tau_1 \ldots \tau_n) = f^M(\bar{s}(\tau_1), \ldots, \bar{s}(\tau_n))$.

Then define $M \models \varphi[s]$ by recursion on formulas.

1. If α is atomic, i.e. $P \tau_1 \ldots \tau_n$, then $M \models \alpha[s]$ iff $P^M(\bar{s}(\tau_1), \ldots, \bar{s}(\tau_n))$
2. $M \models \neg \beta[s]$ iff not $M \models \beta[s]$.
3. $M \models (\alpha \to \beta)[s]$ iff (not $M \models \alpha[s]$) or ($M \models \beta[s]$).
4. $M \models \forall v_i \varphi[s]$ iff for every $d \in |M|$, $M \models \varphi[s(v_i | d)]$ where $s(v_i | d) : \mathcal{V} \to |M|$ such that $s, s(v_i | d)$ agree on $\mathcal{V} \setminus \{v_i\}$ and $s(v_i | d)(v_i) = d$.

Proposition 3.1. If s_1, s_2 are maps from \mathcal{V} to a model M, and agree on all free variables in a formula φ, then $M \models \varphi[s_1]$ iff $M \models \varphi[s_2]$.

The proposition is proved using routine induction on formulas. By the proposition, without ambiguity we often write $M \models \varphi[a_1, \ldots, a_n]$ instead of $M \models \varphi[s]$ where $\varphi = \varphi(x_1, \ldots, x_n)$ and $s(x_i) = a_i$. (Then this is more natural notation since $M \models \varphi[a_1, \ldots, a_n]$ means informally that φ holds in M when each free variable is replaced by the element in $|M|$.) For example the real field $\mathbb{R} \models \exists x(v_0 + x \cdot x = v_1)[-1, 2]$, but $\mathbb{R} \not\models \exists x(\forall x(v_0 + x \cdot x = v_1)[2, -1]$.

A formula φ is said to be valid if for every model and function s, $M \models \varphi[s]$. We say a set Γ of formulas is satisfiable if for some model M and s, M satisfies (every member of) Γ with s. Now for a sentence σ and a model M, we can write $M \models \sigma$ when $M \models \sigma[s]$ for any (some) s. Hence for any model M and sentence σ, either $M \models \sigma$ (σ is true in M) or $M \models \neg \sigma$. When Σ is a set of sentences, we can say M is a model of Σ if M satisfies every member of Σ.

7
Definition 3.2. Let Γ be a set of (\mathcal{L}-)formulas, and ψ a formula. Then $\Gamma \models \psi$ (ψ is a logical consequence of Γ (semantic notion)) means that for every (\mathcal{L}-)model M and every $s : \mathcal{V} \to |M|$, whenever $M \models \phi[s]$ for all $\phi \in \Gamma$, then $M \models \psi[s]$. (In other words, if M satisfies Γ with s then so does ψ.)

Given a set of \mathcal{L}-sentence Σ, $\text{Mod}(\Sigma)$ denotes the class of all \mathcal{L}-models of Σ. A class of \mathcal{L}-structures \mathcal{M} is called an elementary class (EC) if $\mathcal{M} = \text{Mod}(\sigma)$ for some sentence σ. \mathcal{M} is called an elementary class in the wider sense (EC$_\Delta$) if $\mathcal{M} = \text{Mod}(\Sigma)$ for some set of sentences Σ. The class of groups, rings, fields (in the standard languages) are all EC. The class of infinite groups, fields of characteristic 0, algebraically closed fields are EC$_\Delta$. On the other hand, we shall see that the class of finite groups, countable groups, or well-orderings are not EC$_\Delta$.

• Embedding

We first introduce very important notion of a definable set in a model. Fix a language \mathcal{L} for the definition.

Definition 3.3. We say a subset $D \subseteq |M|^k$ is definable in the model M if there is a formula $\varphi(x_1, \ldots, x_k)$ such that $D = \{(a_1, \ldots, a_k) \in |M|^k : M \models \varphi[a_1, \ldots, a_k]\}$.

For example, in the language of field $\mathcal{L}_{\text{field}} = \{+, -, \cdot, 0, 1\}$, the order relation $<$ in the real field is defined by $\exists x(v_0 + x \cdot x = v_1)$.

Now we study morphisms between two \mathcal{L}-models M and N.

Definition 3.4. A function $h : |M| \to |N|$ is said to be embedding (or homomorphism) if h preserves all non-logical symbols, i.e.

1. $h(c^M) = c^N$ for any constant c,
2. for any predicate symbol P (including $=$) and elements $a_1, \ldots, a_n \in |M|$, $P^M(a_1, \ldots, a_n)$ iff $P^N(h(a_1), \ldots, h(a_n))$,
3. for any function symbol f and elements $a_1, \ldots, a_n \in |M|$, $h(f^M(a_1, \ldots, a_n)) = f^N(h(a_1), \ldots, h(a_n))$.

Every embedding is injective ($a =^M b$ iff $h(a) =^N h(b)$). Embedding h is called an isomorphism between M and N if h is onto; then M, N are called isomorphic, denoted by $M \cong N$. If $h : |M| \to |M|$ is isomorphism, h is called an automorphism of M.

For \mathcal{L}-structures M, N, we say M is a substructure of N (denoted by $M \subseteq N$) if $|M| \subseteq |N|$ as sets, and the inclusion map is embedding. By the definition of embedding, $M \subseteq N$ if and only if $|M| \subseteq |N|$; for any constant c, $c^M = c^N$; for any n-ary predicate P, $P^M = P^N \cap |M|^n$; for any n-ary function symbol f, $f^M = f^N \cap |M|^n$.

8
Theorem 3.5. \(h : |M| \rightarrow |N| \) is embedding if and only if for any quantifier free \(\varphi(x_1, ..., x_n) \) and \(a_1, ..., a_n \in |M| \), \(M \models \varphi[a_1, ..., a_n] \) iff \(N \models \varphi[h(a_1), ..., h(a_n)] \).

(2) (Isomorphism Theorem) \(h : |M| \rightarrow |N| \) is an isomorphism, then for any formula \(\varphi(x_1, ..., x_n) \) and \(a_1, ..., a_n \in |M| \), \(M \models \varphi[a_1, ..., a_n] \) iff \(N \models \varphi[h(a_1), ..., h(a_n)] \).

Corollary 3.6. (1) \(M \cong N \) then \(M \models \varphi \) iff \(N \models \varphi \).

(2) If \(D \subseteq |M|^k \) is definable set, and \(h : |M| \rightarrow |M| \) is automorphism, then \(h(D) = D \) (i.e. \(h \) preserves \(D \) set-wise).

• Reduct of a model

Let a language \(\mathcal{L} \) be a subset of a language \(\mathcal{L'} \). If \(M \) is an \(\mathcal{L'} \)-structure, then the reduct of \(M \) to \(\mathcal{L} \) (or \(\mathcal{L} \)-reduct of \(M \)), denoted by \(M[\mathcal{L}] \), is simply the structure with the same universe as \(M \) forgetting interpretations of symbols in \(\mathcal{L'} \setminus \mathcal{L} \). Hence the reduct \(M[\mathcal{L}] \) is an \(\mathcal{L} \)-structure. Conversely, we call \(M \) \(\mathcal{L}' \)-expansion of \(M[\mathcal{L}] \). For \(s : V \rightarrow |M| (= |M[\mathcal{L}]|) \), and \(\mathcal{L} \)-formula \(\varphi \), clearly \(M \models \varphi \) (in \(\mathcal{L}' \)) iff \(M[\mathcal{L}] \models \varphi \) (in \(\mathcal{L} \)).

4. Deduction (or Proof)

Fix a first order language \(\mathcal{L} \).

The set \(\Lambda \) of logical axioms (of \(\mathcal{L} \)) is the set of all generalizations (\(\forall x_1...\forall x_n \varphi \) for some \(n \geq 0 \) is called a generalization of \(\varphi \)) of the following forms:

(1) Tautologies: In propositional logic, if we take 1st-order \(\mathcal{L} \)-prime formulas (= either atomic formulas or of the form \(\forall v_i \varphi \)) as sentence symbols, then every \(\mathcal{L} \)-formula \(\varphi \) can be considered as a propositional sentence with the sentence symbols. The formula \(\varphi \) is said to be a tautology if it is so as the propositional sentence.

(2) \(\forall x \alpha \rightarrow \alpha^t_x \) where the term \(t \) is substitutable for \(x \) in \(\alpha \).

Terminology:

(a) \(\alpha^t_x \) is the result of replacing each free occurrence of \(x \) in \(\alpha \) by the term \(t \). More formally, first define \(u^t_x \) for a term \(u \):

(i) For constant \(c \), \(c^t_x = c \); for variable \(y \), \(y^t_x = \begin{cases} t & \text{if } x = y, \\ y & \text{otherwise.} \end{cases} \)

(ii) For \(fu_1...u_n \), \((fu_1...u_n)^t_x = f(u_1)^t_x ... (u_n)^t_x \).

Now, define \(\varphi^t_x \) recursively:

(i) For an atomic formula \(Pt_1...t_n \), \((Pt_1...t_n)^t_x = P(t_1)^t_x ... (t_n)^t_x \).

(ii) \((\neg \alpha)^t_x = (\neg \alpha^t_x) \); \((\alpha \rightarrow \beta)^t_x = (\alpha^t_x \rightarrow \beta^t_x) \).

(iii) \((\forall y \alpha)^t_x = \begin{cases} \forall y \alpha & \text{if } x = y, \\ \forall y(\alpha^t_x) & \text{if } x \neq y. \end{cases} \)
(b) Informally \(t \) is not substitutable for \(x \) in \(\alpha \) if \(x \) is free in \(\alpha \) and there is some variable \(y \) in \(t \) which is captured by quantifier \(\forall y \) in \(\alpha_y^\varphi \). Formally,

(i) for atomic \(\alpha \), \(t \) is always substitutable for \(x \) in \(\alpha \).

(ii) \(t \) is substitutable for \(x \) in \(\neg \alpha \) iff \(t \) is substitutable for \(x \) in \(\alpha \); \(t \) is substitutable for \(x \) in \(\alpha \to \beta \) iff \(t \) is substitutable for \(x \) both in \(\alpha, \beta \).

(iii) \(t \) is substitutable for \(x \) in \(\forall y \alpha \) iff either

(A) \(x \) does not occur free in \(\forall y \alpha \), or
(B) \(y \) is not in \(t \) and \(t \) is substitutable for \(x \) in \(\alpha \).

(3) \(\forall x(\alpha \to \beta) \to (\forall x \alpha \to \forall x \beta) \).

(4) \(\alpha \to \forall x \alpha \) where \(x \) not free in \(\alpha \).

(5) \(x = y \to (\alpha \to \alpha') \) where \(\alpha \) is an atomic formula of the form

\[
Pz_1 \cdots z_k \text{ or } fz_1 \cdots z_k = fw_1 \cdots w_k
\]

\((z_i, w_j \text{ are variables})\), and \(\alpha' \) is obtained from \(\alpha \) by replacing some occurrences of \(x \) (from \(\{z_1, \ldots, z_k, w_1, \ldots, w_k\} \)) by \(y \).

The following is obviously expected.

Theorem 4.1. Every logical axiom is valid.

It is not difficult to show the theorem except for axioms of form (2). For those, we need the following lemma.

Lemma 4.2. (Substitution lemma) If \(t \) is substitutable for \(x \) in \(\varphi \), then for any model \(M \) and \(s : \mathcal{V} \to \{0,1\} \),

\[
M \models \varphi^t_s \iff M \models \varphi[s(x|\bar{s}(t))].
\]

Now we are ready to define deduction.

Definition 4.3. We say \(\varphi \) is deducible from (or provable from, or a theorem of) \(\Gamma \), denoted by \(\Gamma \vdash \varphi \), if there is a sequence of formulas \(\langle \varphi_0, \ldots, \varphi_n \rangle \), called deduction (or proof) of \(\varphi \) from \(\Gamma \), such that \(\varphi_n \) is \(\varphi \) and for each \(i \leq n \), either \(\varphi_i \in \Gamma \cup \Lambda \) or for some \(j < i \), \(\varphi_i \) is obtained by modus ponens (MP) from \(\varphi_j, \varphi_k \) (i.e. \(\varphi_k \) is \(\varphi_j \to \varphi_i \)).

Induction on Theorems: If \(\Gamma \cup \Lambda \subseteq \Sigma \) and \(\Sigma \) is closed under MP (i.e. \(\alpha \in \Sigma \) and \((\alpha \to \beta) \in \Sigma \) implies \(\beta \in \Sigma \)), then \(\{\alpha : \Gamma \vdash \alpha\} \subseteq \Sigma \).

- **Metatheorems on Deduction**

Rule T: If \(\Gamma \vdash \alpha_0, \ldots, \alpha_n \) and \(\alpha \) is tautological consequence of \(\alpha_0, \ldots, \alpha_n \), (i.e. any truth assignment satisfying \(\alpha_0, \ldots, \alpha_n \) also satisfies \(\alpha \)) then \(\Gamma \vdash \alpha \).

Corollary of Rule T: \(\Gamma \vdash \alpha \) iff \(\alpha \) is a tautological consequence of some finite subset of \(\Gamma \cup \Lambda \).

Deduction Theorem and its converse: \(\Gamma \cup \{\alpha\} \vdash \beta \) iff \(\Gamma \vdash \alpha \to \beta \).
Contraposition: \(\Gamma \cup \{\alpha\} \vdash \beta \) iff \(\Gamma \cup \{\neg \beta\} \vdash \neg \alpha \).

Reductio ad Absurdum: \(\Gamma \vdash \alpha \) iff \(\Gamma \cup \{\neg \alpha\} \) is inconsistent. (A set of formula is inconsistent if some formula and its negation are both deducible from the set.)

Generalization Theorem: If \(\Gamma \vdash \alpha \) and \(x \) not free in \(\Gamma \), then \(\Gamma \vdash \forall x \alpha \).

Specialization Theorem: If \(\Gamma \vdash \forall x \alpha \) and \(t \) is substitutable for \(x \) in \(\alpha \), then \(\Gamma \vdash \alpha(x\,t) \).

\(\exists \)-elimination: If \(\Gamma \cup \{\exists x \alpha\} \vdash \beta \), then \(\Gamma \cup \{\alpha\} \vdash \beta \).

If \(\Gamma \cup \{\alpha\} \vdash \beta \) and \(x \) not free in \(\Gamma \cup \{\beta\} \), then \(\Gamma \cup \{\exists x \alpha\} \vdash \beta \).

\(\exists \)-introduction: If \(\Gamma \vdash \alpha(x\,t) \) and \(t \) is substitutable for \(x \) in \(\alpha \), then \(\Gamma \vdash \exists x \alpha \).

Generalization on constants (Form 1): Suppose \(\Gamma \vdash \alpha \) and \(c \) constant not in \(\Gamma \). Let \langle \alpha_0, ..., \alpha_n \rangle \) be a deduction of \(\alpha(= \alpha_n) \) from \(\Gamma \), and let \(y \) be a variable not in any of \(\alpha_i \). Then \langle \alpha_0^c, ..., \alpha_n^c, y \rangle \) is a deduction. Hence \(\Gamma \vdash \forall y \alpha^c \) and there is a deduction of \(\forall y \alpha^c \) from \(\Gamma \) where \(c \) does not occur.

Generalization on constants (Form 2): Suppose \(\Gamma \vdash \alpha(x\,c) \) where \(c \) is not in \(\Gamma \cup \{\alpha, \beta\} \). Then \(\Gamma \vdash \forall x \alpha \) and there is a deduction of \(\forall x \alpha \) from \(\Gamma \) where \(c \) does not occur.

Rule of EI (Dual of Form 2): Assume that \(c \) is not in \(\Gamma \cup \{\alpha, \beta\} \), and that \(\Gamma \cup \{\alpha(x\,c)\} \vdash \beta \). Then \(\Gamma \cup \{\exists x \alpha\} \vdash \beta \) via a deduction in which \(c \) does not occur.

Equality Theorem:

1. \(\vdash x = x \).
2. \(\vdash x = y \rightarrow y = x \).
3. \(\vdash x = y \rightarrow y = z \rightarrow x = z \).
4. \(\vdash x_0 = y_0 \rightarrow x_1 = y_1 \rightarrow ... \rightarrow x_n = y_n \rightarrow \alpha \rightarrow \alpha' \) where \(\alpha \) is an atomic formula of the form \(Pz_1 \cdots z_k \) or \(fz_1 \cdots z_k = fw_1 \cdots w_k \), and \(\alpha' \) is obtained from \(\alpha \) by replacing some occurrences of \(x_i \) by \(y_i \).

Corollary of Equality Theorem: Let some set of formulas \(\Delta \) be given. For terms \(t, u \), let \(t \simeq u \) mean that \(\Delta \vdash t = u \). Then \(\simeq \) is an equivalence relation on the set of all terms. Moreover if \(t_i \simeq u_i \) \((i = 1, ..., n)\), then for \(n \)-ary function symbol \(f \), \(ft_1...t_n \simeq fu_1...u_n \), and for \(n \)-ary predicate symbol \(P \), \(\Delta \vdash Pt_1...t_n \leftrightarrow Pu_1...u_n \).

5. Completeness Theorem

The goal of this section is to show that \(\Gamma \models \varphi \) iff \(\Gamma \vdash \varphi \).
Theorem 5.1. (Soundness) If $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$.

An easy consequence of Theorem 5.1 is the following.

Corollary 5.2. If Γ is satisfiable, then Γ is consistent.

Theorem 5.3. (Gödel’s Completeness Theorem) If $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$.

Completeness Theorem is equivalent to the following.

Theorem 5.4. If Γ is consistent, then Γ is satisfiable.

For Henkin’s proof of Theorem 5.4, we need the following preparatory lemmas.

Lemma 5.5. (Lindenbaum’s Lemma) Suppose that Σ is a consistent set of arbitrary \mathcal{L}-formulas. Then Σ can be extended to a maximal consistent set Δ of \mathcal{L}-formulas (i.e. Δ is consistent, and for any \mathcal{L}-formula φ, either $\varphi \in \Delta$, or $\neg \varphi \in \Delta$).

If Σ is maximal consistent in \mathcal{L}, then $\Delta \vdash \mathcal{L} \psi$ iff $\psi \in \Delta$.

Lemma 5.6. Let Σ be consistent set of \mathcal{L}-formulas. Let \mathcal{L}' be \mathcal{L} together with some set of new constant symbols. Then Σ remains consistent in \mathcal{L}'.

Lemma 5.7. Let Σ be consistent set of \mathcal{L}-formulas. Then for a variable x, and a constant $d \in \mathcal{L}$, $\Sigma^x_d = \{ \varphi^x_d | \varphi \in \Sigma \}$ is consistent, too.

Lemma 5.8. (Henkin’s Lemma) Suppose that Σ is a consistent set of \mathcal{L}-formulas. Let $\mathcal{L}' = \mathcal{L} \cup \mathcal{C}_0$ where \mathcal{C}_0 is some infinite set of new constant symbols of cardinality $\kappa = \text{Card}(\mathcal{L})$.

Then there is consistent set Δ^* of \mathcal{L}'-formulas containing Σ having the Henkin property, namely for each \mathcal{L}'-formula φ and each variable x, there is a constant $c \in \mathcal{L}'$ such that $\exists x \varphi \rightarrow \varphi^x_c \in \Delta^*$.

We are ready to show 5.4. Suppose that a consistent set Γ of \mathcal{L}-formulas is given. By 5.6 and 5.7, Γ' obtaining from Γ by replacing each free occurrence of v_i in any formula in Γ by a new constant d_i is still consistent in $\mathcal{L}' = \mathcal{L} \cup \{d_i | i \in \omega \}$. Each element in Γ' is then an \mathcal{L}_1-sentence. Now by Lindenbaum and Henkin, there is maximal consistent $\Delta(\supseteq \Gamma')$ of \mathcal{L}'-sentences having the Henkin property for \mathcal{L}'-sentences (i.e. the Henkin property holds for sentences of the form $\exists x \varphi$).

We construct a model M of Δ. The universe of M is T/\simeq, where T is the set of all closed \mathcal{L}'-terms (terms having no variable), and \simeq is defined as in Corollary of Equality Theorem, previously. Now for a constant $c \in \mathcal{L}'$, let $c^M = c/\simeq$; for a function symbol f
and closed terms t_i, $f^M(t_1/\simeq,\ldots,t_n/\simeq) = ft_1\ldots t_n/\simeq$; for predicate P, $P^M(t_1/\simeq,\ldots,t_n/\simeq)$ iff $Pt_1\ldots t_n \in \Delta$. By Equality theorem the interpretations are well-defined, and M is an \mathcal{L}-model.

Lemma 5.9. For an \mathcal{L}'-formula φ having free variables among $\{x_1,\ldots,x_n\}$, and closed terms t_1,\ldots,t_n,

$$
\varphi^{x_1,\ldots,x_n}_{t_1,\ldots,t_n} \in \Delta \text{ iff } M \models \varphi[s] \text{ where } s(x_i) = t_i/\simeq.
$$

Then $M[\mathcal{L}]$ satisfies Γ with $s : \mathcal{V} \to |M|$ such that $s(v_i) = \delta_i^M$. Hence the proof of Completeness Theorem is completed.

6. Compactness and its consequences

Theorem 6.1. (Compactness Theorem) If a set of formulas Γ is finitely satisfiable, then Γ is satisfiable.

Theorem 6.2. Let infinite $\kappa = \text{Card}(\mathcal{L})$.

1. **(Löwenheim-Skolem: Downward)** Let Σ be a set of \mathcal{L}-formulas satisfied by some model. Then Σ has a model of cardinality $\leq \kappa$.

2. **(Tarski: Upward)** Let Σ be a set of \mathcal{L}-formulas satisfied by an infinite model. Then for any $\lambda \geq \kappa$, Σ has a model of cardinality λ.

In particular, for a countable (i.e. finite or countably infinite) language \mathcal{L}, every consistent set Σ of formulas has a countable model. If Σ has an infinite model, then for every infinite cardinal λ, Σ has a model of cardinality λ.

A **theory** (in \mathcal{L}) is a set of (\mathcal{L}-)sentences. If T is the theory, then $\text{Cn}(T) = \{\sigma : \sigma$ is \mathcal{L}-sentence and $T \vdash \sigma\}$. The theory T is said to be **complete** (in \mathcal{L}) if $\text{Cn}(T)$ is maximal consistent in \mathcal{L} (i.e. T is consistent and for any sentence σ, either $T \vdash \sigma$ or $T \vdash \neg \sigma$.) Given two (\mathcal{L}-)theories S,T, we say S axiomatizes T (write $S \vdash T$) if $\text{Cn}(S) = \text{Cn}(T)$.

For a class of \mathcal{L}-structures \mathcal{M}, $\text{Th}(\mathcal{M})$ denotes the set of all sentences true in every model of \mathcal{M}. For a model M, $\text{Th}(M)(= \text{Th}(|M|))$ is complete. Two \mathcal{L}-models M,N are said to be **elementarily equivalent** (write $M \equiv N$) if $\text{Th}(M) = \text{Th}(N)$. If two models M,N are isomorphic, then clearly they are elementarily equivalent. Note that a theory T is complete iff T has a model and any two models of T are elementarily equivalent iff T has a model M such that $\text{Cn}(T) = \text{Th}(M)$.

Definition 6.3. Let κ be a cardinal. A theory T is said to be κ-categorical (or categorical in κ) if any two models of T of cardinality κ are isomorphic.
Theorem 6.4. (Łoś-Vaught Test) Let T be a theory in \mathcal{L}. Assume that every model of T is infinite, and T is κ-categorical for some infinite cardinal $\kappa \geq \text{Card}(\mathcal{L})$. Then T is complete.

Examples:
(1) $T_\infty = \{\lambda_n | 2 \leq n\}$ where $\lambda_n = \exists x_1 \ldots x_n \bigwedge_{1 \leq i < j \leq n} x_i \neq x_j$;
(2) $T_{DLO} = \{\forall x \neg(x < x); \forall xyz(x < y \rightarrow y < z \rightarrow x < z); \forall xy(x < y \lor x = y \lor y < x); \forall xy(x < y \rightarrow \exists z(x < z \land z < y)); \forall x \exists y(x < y) \land \forall x \exists y(y < x)\}$ in $\mathcal{L} = \{<\}$;
(3) For a prime number p or $p = 0$,
$$T_{ACF_p} = \{\text{field axioms}\} \cup \{\forall x_0 \ldots x_n (x_n \neq 0 \rightarrow \exists y x_0 + x_1 \cdot y + x_2 \cdot y + \ldots + x_n \cdot y^n = 0) | 2 \leq n\}$$
$$\cup \left\{\begin{array}{ll}
{\begin{array}{l}
\{p(1 + \ldots + 1) = 0\} & \text{if } p \text{ is a prime number,}
\{p \neq 0 | p \text{ prime}\} & \text{if } p = 0
\end{array}}
\end{array}\right\}$$
in $\mathcal{L}_{\text{field}} = \{+, -, \cdot, 0, 1\}$;
(4) Nonstandard models of number theory;

Theorem 6.5. (Morley’s Categoricity Theorem) Let a theory T be complete in a countable language. If T is categorical in some uncountable cardinal κ, then T is categorical in every uncountable cardinal.

Vaught’s Conjecture: For each complete theory T in a countable language, there are either countably many or 2^{ω}-many non-isomorphic countable models.

7. Turing Machine and Church’s Thesis

• Turing machine

Definition 7.1. Turing machine is a function M such that for some $m, n(\geq 0)$, $\text{dom}(M) \subseteq S \times A$ and $\text{ran}(M) \subseteq S \times A \times \{R, L\}$, where $S = \{q_0, \ldots, q_m\}$ (set of states) and $A = \{b, 1, X_0, \ldots, X_n\}$ (set of alphabets).

We can interpret the Turing machine as a partial function f from ω to ω (i.e. $\text{dom}(f) \subseteq \omega$) as follows: The input of the machine is a tape partitioned into (infinitely many) squares with a starting square singled out. Represent n on the tape as a string of n 1’s beginning from the starting square while the rest of the tape blank. The machine always starts to read the tape from the starting square with state q_0. Hence the first move of the tape depends on $M(q_0, 1)$ or $M(q_0, b)$ (b represents blank). Now if the machine reads some square of the tape x ($x \in A$) with the state q_i, and value of $M(q_i, x) = (q_j, x’, y)$ ($x’ \in A$, and $y = R$ or L), then the machine changes the state to q_j, writes $x’$ on the square (while erasing x, of course) and
makes a movement to the right or left according to \(y \). The machine halts when undefined (i.e. \((q_1, x) \not\in \text{dom}(M) \)). When the machine stops with input \(n \), the output number \(f(n) \) is the number of 1’s from the starting square up to the first blank or \(X_i \)’s. The machine will not halt with the input \(n \) iff \(n \not\in \text{dom}(f) \). (According to this interpretation, if \(M = \emptyset \) then trivially \(M \) represents an identity function.)

For given \(k \in \omega \), the above interpretation also interprets the machine \(M \) as partial function from \(\omega^k \) (\(\omega^0 = \{0\} \)) to \(\omega \) with input string, beginning from the starting square, of \(n_1 \) 1’s; \(X_1 \); \(n_2 \) 1’s;...;\(X_{k-1} \); \(n_k \) 1’s, (representing \((n_1, \ldots, n_k) \in \omega^k \)) while the rest of the tape blank.

With this interpretation, any Turing machine corresponds, for each \(k \in \omega \), to a partial function from \(\omega^k \) to \(\omega \). Clearly two Turing machines may represent the same function. If the domain of the function is entire, then the function is called a total function.

Example) Turing machine \(M \) computing the function \(f(n) = n + 1 \). Let \(A = \{b, 1\} \), \(S = \{q_0, q_1\} \). \(M(q_0, 1) = (q_0, 1, R) \), \(M(q_0, b) = (q_1, 1, L) \).

\(M \) moves right until it comes to the first \(b \), then changes this to 1 and goes left, then halts, as the stage \(q_1 \) is undefined.

Example) Turing machine \(M \) computing the function \(f(n) = 2n \). Let \(A = \{b, 1, X\} \), \(S = \{q_0, q_1, q_2\} \). \(M \) consists of the following quintuples: \((q_0, 1, q_0, X, R) \), \((q_0, b, q_1, b, L) \), \((q_1, 1, q_1, 1, L) \), \((q_1, X, q_2, 1, R) \), \((q_2, 1, q_2, 1, R) \), \((q_2, b, q_1, 1, L) \).

\(M \) changes 1’s to \(X \)’s, then writing additional 1 for each \(X \) while erasing the \(X \) to 1.\(^1\)

Example) Turing machine \(M \) computing the function \(f(m, n) = m + n \). \(A = \{b, 1, X\} \), \(S = \{q_0, \ldots, q_3\} \). \(M \) consists of the following quintuples: \((q_0, 0, q_0, 1, R) \), \((q_0, X, q_1, 1, R) \), \((q_1, 1, q_1, 1, R) \), \((q_1, b, q_2, b, L) \), \((q_2, 1, q_3, b, L) \).

Example) Turing machine \(M \) which halts if a blank tape is given, but does not halt if the tape starts with 1. \(A = \{b, 1\} \), \(S = \{q_0, q_1, q_2\} \). \(M \) consists of the following: \((q_0, b, q_2, b, R) \), \((q_0, 1, q_1, 1, R) \), \((q_1, 1, q_1, 1, R) \) and \((q_1, b, q_1, 1, R) \).

Definition 7.2. (Turing) \(f : \omega^k \rightarrow \omega \) is Turing computable if there is a Turing machine such that given input \(\bar{a} \in \omega^k \), the machine halts after finitely many steps with output \(f(\bar{a}) \).

(As in general recursion theory, one can also call a partial function \(f \) \((\text{dom}(f) \subseteq \omega^k) \) Turing computable if there exists corresponding Turing Machine. But here we pay our attention only to the function whose domain is total \((\text{dom}(f) = \omega^k) \)).

Example: (Rado, 1962) Let \(C_n \) \((n \geq 0) \) be the collection of the Turing machine \(M \) such that

1. the set of alphabets \(A \) is contained in \(\{b, 1, X_0, \ldots, X_n\} \),
2. \(S \subseteq \{q_0, \ldots, q_n\} \),
3. \(M \) halts when input \(n \) is given.

\(^1\)This idea suggested by Dale Lee, an undergraduate student in 2014 fall semester class, reduced the previous argument requiring 14 quintuples.
Then clearly \(C_n \) is finite but non-empty. Now, let \(G_n = \{ M(n) + 1 | M \in C_n \} \). Define the Busy beaver function \(Bb : \omega \to \omega \) such that \(Bb(n) = \) maximum of \(G_n \). Then the Busy beaver function is not Turing computable.

- Recursive functions and sets

Definition 7.3. For \(R \subseteq \omega^n \) a relation, \(\chi_R : \omega^n \to \omega \), the characteristic function on \(R \), is given by

\[
\chi_R(\bar{a}) = \begin{cases}
1 & \text{if } \neg R(\bar{a}), \\
0 & \text{if } R(\bar{a}).
\end{cases}
\]

Definition 7.4. A function from \(\omega^m \) to \(\omega \) (\(m \geq 0 \)) is called recursive (or computable) if it is obtained by finitely many applications of the following rules:

\[\begin{align*}
\text{R1.} & \quad I^n_i : \omega^n \to \omega, 1 \leq i \leq n, \text{ defined by } (x_1, \ldots, x_n) \mapsto x_i \text{ is recursive;} \\
\text{R1.} & \quad + : \omega \times \omega \to \omega \text{ and } \cdot : \omega \times \omega \to \omega \text{ are recursive;} \\
\text{R1.} & \quad \chi_{<} : \omega \times \omega \to \omega \text{ is recursive.}
\end{align*} \]

\[\begin{align*}
\text{R2. (Composition) For recursive functions } H_1, \ldots, H_k \text{ such that } H_i : \omega^n \to \omega \text{ and } G : \omega^k \to \omega, \text{ defined by } \\
F(\bar{a}) = G(H_1(\bar{a}), \ldots, H_k(\bar{a})).
\end{align*} \]

\[\begin{align*}
\text{R3. (Minimization) For } G : \omega^{n+1} \to \omega \text{ recursive, such that for all } \bar{a} \in \omega^n \text{ there exists some } x \in \omega \text{ such that } G(\bar{a}, x) = 0, \text{ defined by } \\
F(\bar{a}) = \mu x (G(\bar{a}, x) = 0)
\end{align*} \]

Definition 7.5. \(R(\subseteq \omega^k) \) is called recursive, or computable (\(R \) is a recursive relation) if \(\chi_R \) is a recursive function.

Theorem 7.6. A function \(f : \omega^k \to \omega \) is recursive iff the function \(f \) is Turing computable.

Summary of proof that every recursive function is Turing computable: Firstly show that the basic recursive functions in R1 are Turing computable by constructing Turing machines computing each of those. Secondly, suppose that \(f \) is obtained by composition of \(H_1, \ldots, H_k \) and \(G \), with corresponding Turing machines \(M_{H_i} \) and \(M_G \). Then show that the machines can be combined to produce a machine \(M_f \) which computes \(f \). Thirdly, show similarly that a machine \(M_G \) can be altered into \(M_f \) which computes \(f \) obtained by minimization of \(G \).

Summary of proof that every Turing computable function is recursive: Suppose that a Turing machine \(M \) computes a function \(f \) on \(\omega^k \). We only concern the case \(k \geq 1 \). Moreover, without loss of generality we can assume that \(k = 1 \), since there is a bijective recursive function from \(\omega^k \) to \(\omega \).
Now at step after the machine began to run, we can describe the current configuration of the input tape representing \(x \in \omega \) as a tuple \((\bar{a}, b, \bar{c})\), where \(\bar{a} \) is the sequence of symbols from the starting square to the square just before the scanned square, \(b \) is the symbol in the scanned square, and \(\bar{c} \) is the sequence of symbols to the right of the scanned square (up to the last 1 before the blank). By the encoding techniques, which will be described in the proof of Gödel’s incompleteness theorems, we can obtain a single number coding the configuration \((\bar{a}, b, \bar{c})\). Now there is a recursive function \(H_M \) on \(\omega^2 \) such that \(H_M(x, s) \) is the code for the configuration of, at \(s \) step, the input tape representing \(x \). Clearly \(H_M(x, s) = H_M(x, s_0) \) for all \(s > s_0 \), where \(s_0 \) is the number at which step the machine \(M \) halts with the input \(x \). Now if we define \(G(x) := \) the code of the sequence \((H_M(x, 0), ..., H_M(x, s_0))\), then the function \(G \) is again recursive. Moreover \(x < G(x) \) and \(f(x) < G(x) \). Define another recursive function \(F_M \) such that

\[
F_M(c) = \begin{cases} f(x) & \text{if there is } x < c \text{ such that } G(x) = c, \\ 0 & \text{otherwise.} \end{cases}
\]

Then \(f(x) = F_M(G(x)) \). Hence \(f \) is recursive.

• Church’s Thesis

Definition 1 A countable set \(S(\subseteq \text{countable } Ob) \) is called computable* if there is an algorithm (finitely described mechanical decision procedure (e.g. a computer program)) determining the membership of \(S \), i.e. for given input \(a \in Ob \), if \(a \in S \) then after finitely many steps the algorithm produces an output ‘yes’; if \(a \notin S \) then the output is ‘no’.

A function \(f : \omega^k \to \omega \) is computable* if there is an algorithm which effectively produces \(f(\bar{a}) \) for given \(\bar{a} \in \omega^k \).

Church’s Thesis The intuitive concepts of computable* (total) functions, and sets (in \(\omega^k \)), coincide with Turing computable (equivalently recursive) functions, and sets.

Proposition 2 In reasonable*=computable* countable language \(L \), the set of all logical axioms (in \(\text{Exp}(L) \) or \(\text{Sent}(L) \)) are computable*.

Definition 3

1. A theory \(T \) in a countable language \(L \) is called axiomatizable* if there is a computable* \(S \) that axiomatizes \(T \).

2. The theory \(T \) is said to be decidable* if \(\text{Cn}(T) \) is computable*.

Now we introduce the notion weaker than computability*.

Definition 4 A countable set \(S \) is called effectively enumerable* if there is an algorithm which effectively lists all the members of \(S \) in some order.

Proposition 5 A countable set \(S \) of objects is given. The following are equivalent.

1. \(S \) is effectively enumerable*.
(2) There is an algorithm such that given input pair \((a, n)\) of an object \(a\) and \(n \in \omega\) the algorithm always halts with ‘yes’ or ‘no’. Moreover \(a \in S\) iff given input \((a, n)\) for some \(n \in \omega\), the algorithm halts with ‘yes’.

In the spirit of above Proposition* 5, we can define the formal counterpart of effective enumerability*.

Definition 7.7. \(P(\subseteq \omega^n)\) is called recursively enumerable (equivalently called computably enumerable) if there is a recursive relation \(R \subseteq \omega^{n+1}\) such that \(P(\bar{a}) \iff \exists x R(\bar{a}x)\).

Church’s Thesis for effective enumerability The intuitive concept of effective enumerability* coincides with that of recursive enumerability.

Proposition* 6 For a computable* set of formulas \(\Gamma\) in a reasonable* \(\mathcal{L}\), the set of formulas \(\{\varphi \mid \Gamma \models \varphi\}\) is effectively enumerable*. In particular, the set of all valid formulas is effectively enumerable*.

Corollary* 7 If a theory \(T\) in a reasonable* \(\mathcal{L}\) is axiomatizable*, then \(Cn(T)\) is effectively enumerable*.

Corollary* 8 If a theory \(T\) in a reasonable* \(\mathcal{L}\) is axiomatizable* and complete, then \(T\) is decidable*.

We shall see the formal counterparts of above starred propositions.