New indices for wet scavenging of air pollutants (O₃, CO, NO₂, SO₂, and PM₁₀) by summertime rain

Jung-Moon Yooᵃ, Yu-Ri Leeᵇ, Dongchul Kimᶜ,g,* , Myeong-Jae Jeongᵈ , William R. Stockwellᶜ , Prasun K. Kunduf,g, Soo-Min Ohᵃ, Dong-Bin Shinᵇ, Suk-Jo Leeʰ

ᵃ Dept. of Science Education, Ewha Womans University, Seoul, Republic of Korea
ᵇ Dept. of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
ᶜ Universities Space Research Association, Columbia, MD, USA
ᵈ Dept. of Atmospheric and Environmental Sciences, Gangneung-Wonju National University, Gangneung, Republic of Korea
ᵉ Dept. of Chemistry, Howard University, Washington, DC, USA
ᶠ JCET, University of Maryland Baltimore County, Baltimore, MD, USA
ᵍ NASA/Goddard Space Flight Center, Greenbelt, MD, USA
ʰ National Institute of Environmental Research, Inchon, Republic of Korea

HIGHLIGHTS
• Wet scavenging on major air pollutants (O₃, CO, NO₂, SO₂, PM₁₀) is estimated.
• Washout and other meteorological effects are analyzed from long-term hourly data.
• Three new washout indices are developed using air-monitored and meteorological data.

ABSTRACT
The washout effect of summertime rain on surface air pollutants (O₃, CO, NO₂, SO₂, and PM₁₀) has been investigated over South Korea during 2002–2012 using routinely available air-monitored and meteorological data. Three new washout indices for PM₁₀, SO₂, NO₂, and CO are developed to express the effect of precipitation scavenging on these pollutants. All of these pollutants show statistically significant negative correlations between their concentrations and rain intensity due to washout or convection. The washout effect is estimated for precipitation episodes classified by rain intensity (one set included all episodes and another included a subset of moderate intensity episodes that exclude Changma and typhoons), based on the log-transformed hourly data. The most sensitive air pollutant to the rain onset among these five air pollutants is PM₁₀. The relative effect of the rainfall washout on the air pollutant concentrations is estimated to be: PM₁₀ > SO₂ > NO₂ > CO > O₃, indicating that PM₁₀ is most effectively scavenged by rainfall. The analysis suggests that the O₃ concentrations may increase due to vertical mixing leading to its downward transport from the lower stratosphere/upper troposphere. The concentrations of CO are reduced, probably due to both the washout and convection. The concentrations of NO₂ are affected by the opposing influences of lightning-generation and washout and this are discussed as well.

１. Introduction
The removal of air pollutants by falling precipitation remains of great interest to the scientific community despite many theoretical and experimental studies (e.g., Mircea et al., 2000). Because of the great impact of air pollutants on human health and ecological environments, it is important to better understand the wet scavenging of air pollutants by rainfall within the complex nonlinear atmospheric chemistry system. It is difficult to completely separate
the washout effect (i.e., wet deposition, the removal process that includes precipitation and cloud physics and chemistry) from other gas-phase processes such as dry deposition, atmospheric mixing, and chemical transformation (Garrett et al., 2006). Therefore, the correlation analysis between various air pollutants and rainfall could be helpful for investigating their interactions and long-term trends.

Most washout effect parameterizations in models rely on much simpler variables such as precipitation rate and solubility. Under well-controlled laboratory conditions the washout effect of air pollutants simply involves physical and chemical interactions between air pollutants and water. These can be expressed in terms of a simple rate such as Henry’s law coefficient or solubility (Seinfeld and Pandis, 2006). However, given the sophisticated chemical processes associated with heterogeneous chemistry, chemical compounds, and atmosphere, more realistic air pollution prediction is possible based on atmospheric chemistry models. In other words, as these air pollutants interact with various meteorological and chemical conditions in the real world, the washout effect does not always depend linearly on the solubility as measured by the laboratory experiments (e.g., Garrett et al., 2006), and thus in-situ measurements are essential for model validation.

A number of previous field studies have investigated the washout effect on some of the major air pollutants (among hundreds of others), such as ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and aerosol (PM₁₀). The washout mechanism of the SO₂ and NO₂ by rainfall has been a main global and regional concern in South Korea, since these compounds play an important role in producing acid precipitation. The washout coefficient for NO₂ is about 80% of that for SO₂ (Martin, 1984). However, the washout effects on the NOₓ and SO₂ concentrations by daily cumulative rainfall are comparable over India, resulting in their reduction (40–45%) (Ravindra et al., 2003). Huo et al. (2010) reported that the rainfall amount and duration negatively correlate with air pollutants (NO₂ and SO₂) over China.

CO and O₃ are much less soluble than SO₂ or NO₂ and many other air pollutants (Gevantman, 1992; Seinfeld and Pandis, 2006). Tropospheric O₃ is produced during photochemical oxidation of volatile organic carbons and CO in the presence of NOₓ (Wang et al., 2008). However, the O₃ concentration also tends to increase somewhat under rainy conditions. The increase of O₃ concentration in rainfall is due to the vertical mixing of the stratospheric and tropospheric O₃ concentrations during convective rain activity and thunderstorms (Martin, 1984; Jain et al., 2005). Plaude et al. (2012) reported that there was a significant negative correlation between monthly averaged aerosol concentration and rainfall intensity over some regions in Russia. Moreover, the washout effect is effective during summer (or monsoon) when convective rain prevails, compared to other seasons (Kan and Tanner, 2005; Plaude et al., 2012).

As mentioned above, there have been many previous studies of the washout effect on air pollutants. However, studies utilizing simultaneous observations for several kinds of air pollutants and rainfall are rarely available. In this study the very dense observational network that routinely monitors both air pollutants and rainfall over South Korea provided sufficient data on a fine enough grid to allow the washout effect to be investigated.

The purpose of this study was to analyze the relative influence of the washout effect on the major air pollutants and to develop quantitative measures for its estimation. The summertime rainfall over South Korea is affected not only by the regional convection and synoptic scale pressure patterns in the middle latitudes, but also by the Asian monsoon (i.e., Changma) and tropical cyclones (i.e., typhoons). This study utilized the hourly observations of the air pollutants and rainfall in South Korea during the summer (June, July, and August; JJA) of the years 2002–2012. The present study has been carried out for the whole summer time period of 2002–2012 (Period 1) and for the same period excluding the Changma and typhoons (Period 2).

In Section 2, we briefly describe the air pollutants and rainfall measurements. Further, we introduce three new statistical indices derived from the correlation between air pollutants and rainfall. The results for different statistical and rainfall conditions are described in Section 3. Section 4 provides the discussion and conclusions.

2. Data and method

Air pollutants and precipitation over South Korea have been measured from January 2002 to December 2012. The data and measurement sites are shown in Fig. 1. The map shows the locations of 283 observational stations for air pollutants from the Ministry of Environment of Korea (MEK), and 457 Automatic Weather Stations (AWSs) for precipitation from Korea Meteorological Administration (KMA) in South Korea. The hourly precipitation has been cumulated from observations per minute. The light rain data, less than 1 mm day⁻¹, are excluded from the correlation analysis of this study. In order to analyze the washout effect it is preferable to use the hourly observations because the air pollutant response to the synoptic or meso-scale precipitation events occurs over fairly short time scales. The hourly data for the air pollutants and precipitation are averaged over a 0.25° × 0.25° (~25 km × 25 km) grid in order to calculate the linear correlation coefficient (CC) between their spatial averages on the same grid. In this study, 83 grid boxes have simultaneous observations of the air pollutants and precipitation. The data correspond to a sample size 2,015,904 (24 h × 92 days × 11 years × 83 grid points) for each air pollutant and precipitation data, which are sufficiently large for a robust statistical analysis.

The pollution monitoring stations are rather unevenly distributed with heavy concentration in the urban areas and a very sparse distribution in the vast rural areas (Fig. 1a). In contrast, the precipitation measurement stations are fairly densely and uniformly distributed throughout the area (Fig. 1b). We choose 0.25° × 0.25° boxes as an optimal spatial grid scale for a robust cross correlation computation. Our choice makes the intrinsic spatial variability of the two quantities of interest, namely pollution concentration and rain rate, at comparable levels and provides a large enough total sample size Ntot (i.e., the total number of grid points for which observation data of both air pollutants and precipitation are both available). We have examined the variability in terms of some dimensionless measure (i.e., the ratio of standard deviation (σ) to mean (X) in Figs. 3–4). The σ/X values for the five air pollutants during Periods 1 and 2 range from 18.7% to 47.3%. Since the σ/X values for rain rate are 20.4–21.4%, they are within the range of the pollutant variability.

Different instruments were employed to measure the surface level air pollutants. O₃ concentrations were measured by the ultraviolet (UV) photometric method with Thermo 49i analyzers (e.g., Diaz-de-Quijano et al., 2009). The non-dispersive infrared method was utilized to measure CO with Thermo, 48CTL. NO₂ was measured by the chemiluminescence method using Thermo, 42CTL analyzers. The Thermo, 43CTL was used to measure SO₂, and its operation is based on the pulse UV fluorescence method. These observational methods and instruments have been widely used to measure these pollutants (e.g., Kim et al., 2011). PM₁₀ was collected with samplers (Model FH62-C14, http://www.thermo.com) and measured by the β-ray absorption method (e.g., Elbir et al., 2011).

It is important to control the humidity level to avoid condensation in the gas measurement systems. Therefore a bottle of silica...
gel is used to remove excessive water vapor and it is positioned at the end of the manifold system. While not specifically designed for humidity control, membranes (a Nafton type of dryer) and the thermal converter employed respectively for SO2 and NO2 measurements have an additional effect of minimizing the influence of humidity. For PM10, a water vapor trap or heater is installed to control the relative humidity of the sample volume. There is little influence of high humidity on CO and O3 measurements. Also, data quality monitoring is preformed to check for any possible condensation inside the measurement systems. Any suspicious data are removed before the data are distributed to the public.

We investigated the effect of strong convective rain on CO, O3 and NO2 in a case study on 14–15 August 2010 at the Osan radiosonde site (127.03E, 37.10N, 52 m elevation), based on the lightning, radar, and CAPE (Convective Available Potential Energy; Donner and Phillips, 2003; http://weather.uwyo.edu/upperair/sounding.html) data. The CAPE, which is an indicator of potential energy for convection, can be derived from the radiosonde temperature profile that is provided by the Republic of Korea Air Force four times a day (0000, 0600, 1200 and 1800 UTC). Osan, about 36 km southwest of Seoul (126.92E, 37.49N), is classified as a residential area from the MEK land-type usage. The real-time lightning has been observed from 7 IMPACT ESP (IMProved Accuracy from Combined Technology Electronic Stability Programme; e.g., Haddad et al., 2012) and 17 LDAR II (Lightning Detection And Range II; e.g., Stolzenburg et al., 2013) sensors of KMA. In this study, the measurements have been accumulated for 30 min before every hour (e.g., 10:30–11:00 Local Standard Time; LST) within an about 10 km radius centered at the AWS site (127.05E, 37.18N). The Osan air-pollution monitoring station (127.08E, 37.16N) is also located within this area. In addition, since Doppler radar provides the high-resolution precipitation distribution on the Changma front, we have utilized the rain rate images of S-band Doppler radar of KMA at Osungsan (126.78E, 36.01N).

The rainy season over the Korean peninsula, called Changma, usually occurs from late June to late July (Table 1)(KMA, 2012) during which it may rain with different amounts and intensity regionally. Considering the north/south movement of the Changma pattern, its local influence has been investigated by subdividing South Korea into three regions designated ‘Middle’, ‘South’, and ‘Jeju island’ (Fig. 2), for which the average Changma durations are 30.2, 33.6 and 31.8 days respectively. Like the Changma case, the typhoon effect is considered over the same three regions (Table 2). Thus, we have analyzed the washout effect on air pollutants for the following two periods; the total rainfall period that includes the entire summer of 2002–2012 (i.e., Period 1) and the moderate rainfall period, which excludes Changma and typhoons (i.e., Period 2). On the average, approximately two typhoons have affected each summer during 2002–2012. To investigate the washout effect the CC between the air pollutant and the precipitation rate has been

Fig. 1. Locations of (a) 283 air pollution monitoring stations of MEK and (b) 457 Automatic Weather Stations (AWSs) over South Korea during the summertime (JJA) over the years 2002–2012.

Fig. 2. Location of the areas and distribution of grid points considered for the Changma effect. The two areas of ‘Middle’ and ‘South’ over South Korea are indicated by squares and triangles, respectively. The area of ‘Jeju island’ is denoted by circles.
calculated on a $0.25^\circ \times 0.25^\circ$ grid when spatial averages of the two variables are simultaneously available.

The statistical significance test for the CC has been carried out by employing the t-test (von Storch and Zwiers, 1999) at significance levels of $p < 0.05$ and $p < 0.01$ using the familiar statistic

$$t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

where r and N represent the CC and the sample number, respectively.

The washout effect is quantifiable in terms of the occurrence of a negative correlation between the pollutant concentration and the rain rate by three new ‘washout indices’ that we define. Let N_{sig} denote the number of grid points that have a significant (positive or negative) correlation; let N_{neg} denote the number that has a significant negative correlation. The Absolute Washout Index (AWI) is defined as the ratio

$$\text{AWI} = \frac{N_{\text{neg}}}{N_{\text{sig}}} \times 100(\%)$$

Higher values of AWI suggest a greater washout effect. It is also convenient to define the Relative Washout Index (RWI) as the ratio

$$\text{RWI} = \frac{N_{\text{neg}}}{N_{\text{neg}(\text{PM}_{10})}} \times 100(\%)$$

because PM$_{10}$ generally has the largest number of grid points with a significant negative correlation.

If the number of grid points of a significant positive or negative correlation is too small ($N_{\text{sig}} < 5$), the AWI value can be statistically unstable due to a small sample number. In this study, the smallest grid number for N_{sig} is 9 for CO from the log-transformed hourly data during Period 2 at a significance level of $p < 0.01$.

We can also introduce the quantity NCF (Negative Correlation Fraction) as the ratio of N_{neg} to N_{tot}:

$$\text{NCF} = \frac{N_{\text{neg}}}{N_{\text{tot}}} \times 100(\%)$$

In this study, $N_{\text{tot}} = 83$. The value of N_{tot} can vary depending on the geographical region and the available observational networks.

3. Results

3.1. Climatological distribution of air pollutants and precipitation for summer

Figs. 3 and 4 show the climatological distribution of the air pollutants (O$_3$, CO, NO$_2$, SO$_2$, and PM$_{10}$) and precipitation in a
0.25° × 0.25° grid over South Korea for Period 1 and Period 2, respectively. Here, air pollution concentrations have been averaged in rainy cases (>1 mm day⁻¹) along with the corresponding rain intensity. Thus, the average values can be substantially lowered due to the washout effect, compared to clear-sky or weak (<1 mm day⁻¹) rain cases.

Higher values for O₃ (30–40 ppb) have occurred during Period 1 at two stations near the western and eastern coasts of 37–38N (Fig. 3a). CO has a longer lifetime and is geographically less variable (Fig. 3b). The CO concentration is the highest (7–8 0.1 ppm) in the industrial complex in Gumi (128.32E, 36.12N). The high concentrations of PM₁₀, NO₂ and SO₂ are co-located within the metropolitan area near Seoul, where there are many vehicles and plants, as well as in the southern coast where the major industrial complexes are located. Specifically, NO₂ values are high (20–30 ppb) in the metropolitan area probably due to heavy traffic (Fig. 3c), whereas high concentrations of SO₂ (7–8 ppb) occur mainly in the industrial complexes near the southeastern coast (Fig. 3d). The concentrations of PM₁₀ are relatively high (30–45 μg m⁻³) in the metropolitan and southeast industrial areas (Fig. 3e). Overall, the concentrations of NO₂ and CO are high in the metropolitan and commercial areas (Fig. 3b, c), while SO₂ and PM₁₀ values are high in the industrial areas near the south or southeast coasts (Fig. 3d, e). Therefore, NO₂ and CO may primarily be related to transportation (e.g., automobile exhaust), while the SO₂ and PM₁₀ are related to the emissions from the fuel combustion in stationary sources (e.g., factory exhaust).

The rain intensity tends to be high inland compared to the coastal regions (Fig. 3f). Specifically, it has rained in summer more over the areas of the central inland, the Yeongnam (i.e., the southeast region) and Honam (i.e., the southwest region) boundary, and Jeju island (8–11 mm h⁻¹), but less over the Yeongnam and coastal areas (5–7 mm h⁻¹). The high spatial variability of rainfall is due to the topographical feature. Indeed, the heavy rainfall areas are located near the high mountains.

The rainfall amount during Period 2 (Fig. 4) is 2.8 ± 0.58 mm h⁻¹ which is about one third that of Period 1. The corresponding air pollutant concentrations for Period 2 are conversely lower than those for Period 1, except for O₃ (Figs. 3e–4). Also, there is much less spatial variation in rainfall for Period 2 compared to Period 1. As a result, during the summer of Changma and typhoon periods, it tends to rain heavily over the South Korea inland. Despite a large difference in precipitation between the two periods, the corresponding differences between the surface air pollutant concentrations are equal within a ~2% difference, but not statistically significant.

3.2. Washout effect on hourly air pollutants

In this section we present the results of our analysis of the washout effect. We employed a t-test analysis on the logarithmically transformed data. Strictly speaking the t-test applies to a bivariate normal distribution (von Storch and Zwiers, 1999) and it can provide more accurate statistical information for a normal frequency distribution than for a strongly skewed frequency distribution. But the t-test is also known to be considerably robust for populations deviating extensively from a normal distribution (Zimmerman, 1986).
note that the positive CCs among the significant O3 that vertically mixes upper-level O3 in the stratosphere/probably because strong convection during heavy rain leads low-N points among pollutants (O3, CO, NO2, SO2, and PM10) and precipitation intensity in the summer of the years 2002 to 2012 considered in the correlation analysis between air pollutants and AWS precipitation during the summer periods over the years 2002–2012. Normalized frequency distributions (% in common logarithmic ordinate scale over South Korea during the summer of the years 2002–2012. The washout effect on air pollutants has been examined in terms of AWI and the grid number of negative CC (i.e., NCF multiplied by 100). The distributions in Fig. 5g–l are closer to normal after log-transforming the data. The left-tail seen in Fig. 5g–k for the pollutants is common in nature.

Fig. 5 shows the normalized frequency distributions of air pollutants (O3, CO, NO2, SO2, and PM10) and precipitation intensity in the order of common logarithm scale over South Korea during the summer of the years 2002–2012 for the entire summertime period. Their original values do not show normal frequency distributions, but asymmetric distributions with a large number of their small values (Fig. 5a–f). The distributions in Fig. 5g–l are closer to normal after log-transforming the data. The left-tail seen in Figs. 6 and 7, and Table 3. Fig. 6a, b shows the CCs between air pollutants and precipitation for Period 1. Statistically significant CCs, except for O3, are generally negative over the entire domain (Fig. 6). The grid number with the negative CC at the two significance levels (for O3 in Fig. 6a and c, and Table 3). It is interesting to note that the positive CCs among the significant CCs are dominant compared to the negative ones (i.e., AWI $\approx 17–31\%$), under the different conditions of rainfall-type periods and significance levels (for O3 in Fig. 6a–d and Table 3). The positive relationship occurs probably because strong convection during heavy rain leads low-level O3 that vertically mixes upper-level O3 in the stratosphere/upper troposphere down to the troposphere (Martin, 1984; Jain et al., 2005).

The washout effect has been summarized in terms of AWI and the grid number of negative CC (i.e., NCF multiplied by N_{tot}) (Fig. 7). Here the bar size represents the grid number of the negative CC. The two bars on the left side for each air pollutant are for Period 1, while the two bars on the right side are for Period 2. The AWI (%) for Period 1 is PM10 (100) > SO2 (95–98) > NO2 (77–81) > CO (76–78) > O3 (18–20) at the two significance levels (Fig. 7 and Table 3). Further, the AWI (%) order for Period 2 is PM10 (93–100) > SO2 (84–95) > NO2 (86–90) > CO (56–65) > O3 (21–31) at $p < 0.05, 0.01$. Compared to Period 1, the AWI of the pollutants for Period 2 generally tends to decrease, implying that the precipitation intensity and duration from Changma and typhoons do affect the estimation of the extent of washout. However, O3 is least sensitive to the Periods (heavy or moderate rainfall types). The magnitude

<table>
<thead>
<tr>
<th>Year</th>
<th>Middle</th>
<th>South</th>
<th>Jeju island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>End</td>
<td>Duration</td>
</tr>
<tr>
<td>2002</td>
<td>Jun 23</td>
<td>Jul 24</td>
<td>32</td>
</tr>
<tr>
<td>2008</td>
<td>Jun 17</td>
<td>Jul 26</td>
<td>40</td>
</tr>
<tr>
<td>2010</td>
<td>Jun 26</td>
<td>Jul 28</td>
<td>33</td>
</tr>
<tr>
<td>2011</td>
<td>Jun 22</td>
<td>Jul 17</td>
<td>26</td>
</tr>
<tr>
<td>2012</td>
<td>Jun 29</td>
<td>Jul 17</td>
<td>19</td>
</tr>
</tbody>
</table>
orders for the washout effect are the same for the two periods. Meanwhile, the NCF (%) order is PM$_{10}$ (37–83) > SO$_2$ (24–65) > NO$_2$ (15–42) > CO (6–41) > O$_3$ (4–12) under different conditions of significance levels and rain-type periods (Table 3). The NCF order is consistent with that of AWI.

The data clearly demonstrate the scavenging of air pollutants (CO, NO$_2$, SO$_2$, and PM$_{10}$) by summertime precipitation based on the three washout effect indicators (NCF, AWI, and RWI) (Table 3). The washout effect indices for PM$_{10}$ and SO$_2$ are the most pronounced among the pollutants. The washout effect showed the

Fig. 6. Significant correlations in a 0.25° × 0.25° grid between the logarithmic values of hourly observations of AWS precipitation (mm h$^{-1}$) and the five kinds of air pollutants (O$_3$, CO, NO$_2$, SO$_2$, and PM$_{10}$) over South Korea for summer periods over the years 2002–2012 (i.e., Period 1). The correlations for the pollutants are shown at a significance level of a) $p < 0.05$ and b) $p < 0.01$, respectively. c) Same as in Fig. 6a except for Period 2. d) Same as in Fig. 6b except for Period 2. Here $N_{tot} = 83$.
The washout effect, except for O$_3$, is greater for Period 1 (heavy rain) than for Period 2. In addition, apparent higher CO wet scavenging for Period 1 is comparable with that of NO$_2$ and it is probably due to the pollutant divergence under the convection in rainfall as well as the direct rain washout. This hypothesis is plausible based on the low water solubility value of CO compared to those of other pollutants (e.g., SO$_2$ and NO$_2$).

Table 3

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Correlation analysis between logarithmic values of pollutant and precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical t-test analysis for the correlation between the logarithmic values of hourly observations of air pollutants (O$_3$, CO, NO$_2$, SO$_2$, PM$_{10}$) and AWS precipitation for Period 1 and Period 2, respectively. The bar values mean the number of grids of statistically significant negative correlation between air pollutant and precipitation among N$_{AWI}$ = 83. The four bars at each air pollutant are depicted in the combined condition of rainfall-type periods (Period 1 and Period 2) and significance levels (p < 0.05 and p < 0.01), respectively. The number value on the top of each bar stands for AWI (%), as defined in the text. The larger values of both bar and AWI indicate a more effective washout.

Table 3

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Period 1</th>
<th>Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NCF (%)</td>
<td>AWI (%)</td>
</tr>
<tr>
<td>p < 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O$_3$</td>
<td>10/83 (12.0)</td>
<td>10/51 (19.6)</td>
</tr>
<tr>
<td>CO</td>
<td>34/83 (41.0)</td>
<td>34/45 (75.6)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>35/83 (42.2)</td>
<td>35/43 (81.4)</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>54/83 (65.1)</td>
<td>54/57 (94.7)</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>69/83 (83.1)</td>
<td>69/69 (100.0)</td>
</tr>
<tr>
<td>p < 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O$_3$</td>
<td>6/83 (7.2)</td>
<td>6/34 (17.6)</td>
</tr>
<tr>
<td>CO</td>
<td>25/83 (30.1)</td>
<td>25/32 (78.1)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>26/83 (31.3)</td>
<td>26/34 (76.5)</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>46/83 (55.4)</td>
<td>46/47 (97.9)</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>63/83 (75.9)</td>
<td>63/63 (100.0)</td>
</tr>
</tbody>
</table>

The magnitude of the washout indices on the PM$_{10}$ and NO$_2$ confirms the findings of a previous study by Lim et al. (2012). They reported that the washout effect on PM$_{10}$ over South Korea during 2000–2009 was greater by ~40% than that on NO$_2$. They also reported that the effect on CO was lower because of its small Henry’s law coefficient (Seinfeld and Pandis, 2006). The Henry’s law coefficient of CO (9.5 × 10$^{-4}$ M atm$^{-1}$ at 298 K) is relatively small compared to that of NO$_2$ (1.0 × 10$^{-2}$ M atm$^{-1}$ at 298 K). The significant negative CC between CO and precipitation in some of the grids is interesting in view of the low water solubility of CO (Gevantman, 1992). Probably various other meteorological processes in addition to the washout effect may affect its surface concentration (e.g., Plaude et al., 2012). One of these processes is the active convection that under rainy conditions mixes air from aloft with air nearer the surface, and this dilutes compounds with emission sources near the Earth’s surface.
3.3. A case study: effect of convective rain on O_3, CO, NO_2, SO_2 and PM_{10}

In Section 3.2, the possibility of meteorological processes affecting the surface concentrations of the air pollutants in addition to washout effect was mentioned briefly. Among the processes, it was hypothesized that convective rain may increase O_3 but decrease CO. Also, it has been reported that NO_2 can be generated by lightning during convective rain (Choi et al., 2009). The lightning, radar and CAPE data have been utilized to support the occurrence of convective rain (e.g., Singh et al., 2013).

The lightning-generated NO_2, which is the largest in the upper troposphere over the convective region, can be transported to ground level, leading to a minimum in the mid-troposphere and increasing near the surface (Y. Choi, personal communication). This tendency is expected due to updrafts and downdrafts in the troposphere. But the reduction of the pollutants, particularly PM_{10} and SO_2, may be more substantial during the occurrence of a rain event. In order to investigate these possibilities in more detail, a case study was conducted for the convective rain episodes near the Osan radiosonde site during August 14–15, 2010.

Fig. 9 shows two-day hourly measurements of seven variables (O_3, CO, NO_2, SO_2, PM_{10}, precipitation, and lightning). Diurnal variations of the air pollutants at the Osan site of MEK are shown in order to distinguish their effects from convective rain. The diurnal cycle is calculated, using 11-year data for the days of August 14 and 15, respectively. In the calculation of the cycle, the hourly data have the maximum sample number of 11. However, the sample numbers varied from 8 to 11 due to missing observations. We have derived the 11-year climatology without the interpolation for missing ones. Diurnal variations of O_3 and NO_2 are similar to those in Flemming et al. (2005). The CAPE values ranging from 0 to 1000 J kg^{-1} during the study period characterize marginal convection (Wallace and Hobbs, 2006). Two rain events at 09:00–12:00 LST on August 14 and at 03:00–08:00 LST on August 15, 2010 accompanied lightning occurrences (Fig. 10). Lightning flashes were observed at 11:00 LST on August 14, 2010, and at 04:00 and 06:00 LST on August 15, 2010. The lightning frequency and intensity were relatively high (red arrow in Fig. 9) at 04:00 LST on August 15, 2010, intermediate at 11:00 LST on August 14 (blue arrow), and relatively low at 06:00 LST on August 15, 2010 (black arrow). The eastward frontal passages accompanied the lightning and support the high possibility of convective rain seen in the radar rain rate images (Fig. 10e–f).

The O_3 concentration substantially increased during the two rain events, particularly on August 15 (Fig. 9a). CO values tend to decrease during the events (Fig. 9b). The convective rain events are likely to result in O_3 transport from lower stratosphere/upper troposphere to the surface. CO concentrations may be reduced by washout effect and by convection near the surface that dilutes it.

The NO_2 concentrations are considerably enhanced for the former event with moderate rain, but reduced for the latter event with heavy rain (Fig. 9c). This implies that the washout of heavy rain on NO_2 may eclipse the lightning-generated NO_2 for the latter event period when NO_2 values were remarkably low compared to those of NO_2 diurnal variation. In addition, lightning-generated NO_2 during convection tends to enhance O_3 in the upper troposphere (Choi et al., 2009). However, in this study we cannot separate the O_3 influx from the upper tropospheric layer and lightning-generated NO_2 during convection.

The SO_2 values during the case study period are conspicuously low (~3 ppb) compared to those of SO_2 diurnal variation (Fig. 9d). However, they have a tendency to increase after the rain event on August 15, and were almost restored to the level of diurnal variation. This is clearly shown for negligible convection of CAPE = 6. Among the five air pollutants PM_{10} is the most sensitive to the rain onset, particularly during the initial 2 h (Fig. 9e). Note that no marked washout on PM_{10} occurred despite the most heavy rainfall at 06:00 LST on August 15, 2010 because of the primary washout during the moderate rainfall which had taken place 2 h before. Overall, the values of CO, SO_2 and PM_{10} during the rainy periods are notably low due to the washout effect, compared to those of their diurnal variations (Fig. 9b, d and e). However, the values of O_3 and NO_2 are noticeably enhanced probably because of convection and the lightning during moderate rain, respectively (Fig. 9a and c). Also, the increase in O_3 clearly occurred when the three lightning events were observed, suggesting that lightning-generated NO_2 may enhance O_3 in the upper troposphere (Choi et al., 2009).

We have investigated the quality of SO_2 data from their acquisition throughout all the processing procedures. The data have been supplied after rounding off the original data to the nearest thousandths under the ppmv unit (e.g., 0.003, 0.007 ppmv). We confirmed this from the guidance manual for the air-pollution monitoring of MEK (MEK, 2011). Thus, if the level of SO_2 concentration is low, the data can be shown with only one significant digit in ppbv unit. For the given period shown in Fig. 9d, the SO_2 changed very little from 3 ppbv and the original SO_2 concentrations were truncated during the data transfer (through communication network) and the archiving procedure. Such data truncation results in a relative error of SO_2 concentration up to about 17% for this case.

4. Discussion and conclusions

The washout effect of summertime rainfall on surface concentrations of air pollutants (O_3, CO, NO_2, SO_2, and PM_{10}) in a 0.25° × 0.25° spatial grid has been investigated over the 83 grid points covering South Korea during 2002–2012. The hourly observations of the pollutants and rainfall intensity at the surface were obtained from the MEK and the KMA AWS, respectively. Our
study is based on the fact that the air pollutants have different solubility values in water, and that the washout effect can be estimated from a correlation analysis between the surface concentrations and precipitation.

Statistically significant negative correlations between pollutant concentrations and rainfall intensity for PM$_{10}$, SO$_2$, NO$_2$, and CO were found due to precipitation scavenging. Three new washout indices (AWI, RWI, and NCF) for each pollutant have been developed to express the effect of this negative correlation. Based on the log-transformed data, the washout effect was estimated for precipitation episodes analyzed under different conditions classified by rain intensity including all episodes (Period 1) and the subset of moderate intensity episodes (Period 2) that exclude Changma and typhoons.

The precipitation for Period 1 (8.7 mm h$^{-1}$) is about three times as large as that for Period 2 (2.8 mm h$^{-1}$). Despite the large difference in precipitation between the two periods, the differences in air pollutant concentrations between them are within ~2%. Overall, the rainfall washout on the pollutants has been estimated in the order: PM$_{10}$ > SO$_2$ > NO$_2$ > CO > O$_3$, based on the three indices of AWI, RWI, and NCF.

From the two-day case study, we draw the following conclusions: 1) CO concentration is reduced likely due to both the

Fig. 9. Hourly measurements of a) O$_3$, b) CO, c) NO$_2$, d) SO$_2$, and e) PM$_{10}$ in black curves at the Osan site (127.08 E, 37.16 N) in South Korea for the period of 14 and 15 August 2010, together with simultaneous precipitation observations (red). Diurnal variations (blue) of the five air pollutants are shown, based on the climatological data at the Osan site of MEK during the years 2002–2012. The CAPE indices are given above the top panel. The lightning occurrence is also shown at top of each figure with the ‘arrow’ symbol. Here the arrow colors of red, blue, and black represent the relative maximum, intermediate value and the relative minimum in the frequency of lighting. The shaded area indicates the standard deviation (σ) of the pollutant concentrations in diurnal variation.
washout and convective activity. 2) The surface O3 concentration is probably enhanced by vertical mixing associated with the convection leading to the downward O3 transport from lower stratosphere/upper troposphere (see also Martin, 1984; Jain et al., 2005). 3) Among the five air pollutants, PM10 is the most sensitive to the rain particularly during the first 2 h. 4) The CO, SO2 and PM10 concentrations during the rainy periods are notably low compared to those of their diurnal variations due to the washout effect. 5) The observed enhancement of O3 and NO2 concentrations is probably due to convection and lightning, respectively. 6) Lightning-generated NO2 at the surface can be suppressed by heavy rainfall because of its washout on NO2.

Although the washout effect is the result of integrated effects of emission, solubility, advection, and precipitation, most washout effect parameterizations in models rely on much simple variables such as precipitation rate and solubility. More realistic treatments of processes are needed for atmospheric chemistry models in order to improve their prediction of air pollutants because the real atmosphere is much more complex, including gas-phase chemistry, heterogeneous chemistry and the interactions between aerosols and clouds. To date, there are few observations and analysis at high spatial and temporal resolutions available for validating model performance. In addition, most parameterization schemes for precipitation, cloud, wind, and wet deposition processes used in models are highly simplified and their performance is uncertain. The washout indices introduced in this study provide new quantitative statistical measures for evaluating the overall absolute and relative washout effects of air pollutants in models under realistic atmospheric environment.

However, it would be difficult to use the indices to improve a specific parameterization or process in models since they result from a combination of several processes. The relationship between measured and modeled washout index is beyond the scope of this work. Our analysis focuses on the summer, and future studies are needed for other seasons under different meteorological conditions (e.g., Zhang et al., 2012). This study can also be applied to air pollution research and policy-making involving acid rain, as well as studies of the impact of precipitation on air quality and the feedbacks between aerosol and the hydrological cycle (cloud or precipitation).

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (NO. 2009-0083527) and the Korean Ministry of Environment as the Eco-technopia 21 project (NO. 201200016003). We would like to
thank the Ministry of Environment of Korea (MEK), and the Korea Meteorological Administration (KMA) for providing air pollution and precipitation data, respectively. WRS thanks the National Oceanic and Atmospheric Administration for a grant to Howard University's NOAA Center for Atmospheric Sciences and the National Aeronautics and Space Administration for a grant to “Howard University Beltsville Center for Climate System Observation”.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.atmosenv.2013.10.022.

References

MEK, 2011. 대기오염측정망 설치·운영지침 (Guidance manual for the installation and operation of air-monitoring pollution) (written in Korean).

