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Current Research Work
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Architectural features of David rasterizer

Performing z-test pipeline before TBE(Texture, g p p ,
Bump, and Environment) mapping completion
 Saving memory bandwidthSa g e o y ba d d

 Solve the incosistency problem with tagging scheme 
for pixel cache

 Texture cache sharing with BE(Bump and 
Environment) mappingEnvironment) mapping
 Efficient structure
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Rasterizer model : Neon, S3
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Architecture Comparison 
Neon

When is texture mapping

S3 David

When is texture mapping 
performed? before Z test

OpenGL semantics for perfectly

after Z test after Z test

OpenGL semantics for perfectly 
transparent texture Support Not support Support

• Simple scheme

Advantages • Support OpenGL 
semantics

• No wasting bandwidth
 No fetching texture 
data that are obscured

• No wasting bandwidth
 No fetching texture 
data that are obscured

• Support OpenGL 
semantics

• Wide separation

Disadvantages • Wasting bandwidth • Unable to support
OpenGL semantics

• Wide separation
 Inconsistency problem
Solve it using additional

flag bits in a pixel cache
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Texture Cache Sharing
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Environments for Performance Evaluation
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Bandwidth Saving in Texture Data(ProCDRS)
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Bandwidth Saving in Texture Data(Light)
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Bandwidth Saving in Texture Data(Blocks)
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Bandwidth Saving in Texture Data(Flarge)
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Conclusions

Simulation Environment (David Simulator)
Evaluation for 3D graphics accelerator architecture Evaluation for 3D graphics accelerator architecture

 Performance comparison

David ArchitectureDavid Architecture
 Performing z-test before TBE mapping completion

• 5% 29% bandwidth savings for texture data in Scenes with• 5%~29% bandwidth savings for  texture data in Scenes with 
1~3 depth complexity

• As the depth complexity grows, the amount of bandwidth 
i b lsavings become large

– Recently, a 3D graphic application shows high depth complexity

 Texture cache sharing with BE mapping
• Hardware saving from sharing and hardware reduction for BE 

mappings
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