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The Design of A High Performance 3D Graphics Accelerator
for Realistic Image & Building Core IPs

Technoloqy Prevalent High Performance
3D Graphics Accelerator 3D Graphics Accelerator

» Geometry Processing Unit, Rendering Unit

» Realization Mapping Unit
 P—M Architecture, Memory Architecture for 3D GA

Architecture

Research » Cache & Memory Hierarchy
 Parallel 3D Rendering System
Design « Execution Model(VLIW, SIMD, RISC etc.), Control & Interface
Research  Appliance to other system library by implementing VHDL
SW * AP1 & Rendering Algorithm

Research » Geometry Compression / Modeling
Verification « Construction of Simulation Environment & Verification by Simulation
/1 nteg ration * Prototype System
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Current Research Work
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David Simulator Simulation Work Flow
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Setup pipeline

Rasterizer

v

..................

Texture cache
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Span processing
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Mapping unit (texture,

bump, environment,
displacement)

Z Compare Color Blend
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MC for frame buffer access

MC for image map
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Performance Result
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Architectural features of David rasterizer
I

I Performing z-test pipeline before TBE(Texture,
Bump, and Environment) mapping completion
= Saving memory bandwidth

= Solve the incosistency problem with tagging scheme
for pixel cache

J Texture cache sharing with BE(Bump and
Environment) mapping

= Efficient structure

-11 -

Sy St | o
YONSEI UNIVERSITY =awozs



Pixel infgrmation

G

Rasterizer moadel.: Neon S3

Neon

Texture read / filter

-

: Texture |/
cache

Texture blend

-

N
=
@
QD
o

L
[~

-12 -

—

N
~+
D
(2]
~+

-

Alpha test

N
- 5 e
2

Destination read

—

Alpha blend

v

Destination write

mory

Pixel infirmation

S3

Z read

-

Z write

v

Texture read / filter

<: Texture

-

Texture blend

-

Alpha test

P

Destination read

—

Alpha blend

v

Destination write




David Rasterizer

Pixel information
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Architecture Comparison

Neon S3 David
When is texture mappin
=T A pping before Z test after Z test after Z test
performed?
OpenGL semantics for perfectly
Support Not support Support
transparent texture PP PP PP
* Simple scheme
. : * No wasting bandwidth
N ta0es * Support OpenGL T)OI\\IACI) a?;gﬁigar;g)\:\&drteh -> No fetching texture
g semantics g data that are obscured
data that are obscured
e Support OpenGL
semantics
» Wide separation
! . i . » Unable to support -> Inconsistency problem
Disadvantages Wasting bandwidth OpenGL semantics —>Solve it using additional
flag bits in a pixel cache
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Jexture cache Sharing

‘ Current 3D Architecture ‘

[ David 3D Architecture ]

: -
Texture Mapping #1 0| e

Texture Mapping #1 |
Cache Shared H/W

1

Bump Mapping [«

- Bump Mapping — Shared
1| Cache

Texture Mapping #2

Environment Mapping [«

- Shared H/W
Environment Mapping [+~

7
Current Architecture David Architecture
Mapping Hardware Independent H/W Shared H/W

- Reduce H/W cost (about 30%0)

BE Mapping : Cache Access

Featlires BE Mapping : DRAM Access Remove Pipeline Stalls due to DRAM Access
Cache Size Same Same
# of Read Port in Cache 2 2

Throughput

Texture Mapping : 1 Cycle

1 Cycle BE Mapping : 2 Cycles (infrequent operations)
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Environments for Performance Evaluation
[

Model Data

l OpenGL format
Mesa Library Call

~

Rasterizer Simulator Call

Setup pipeline

v

Rasterizer

D

Edge work pipeline

v

Texture cache

Span processing

3

b——»

Z Compare

Mapping unit (texture,
bump, environment,
displacement)

Color Blend

!

i

!

MC for frame buffer access

MC for image map
access

v

Z Depth Complexity, # of Z Test Fails
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Banawidth Saving in Texture Data(ProCDRS)

I
—— Depth Complexity —= Bandwidth Saving
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Depth Complexity, % Bandwidth Saving
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Frame Number

Depth Complexity Bandwidth Saving
Average 2.22 21.55%
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Banadwidth Saving in Texture Data(Light)

I
—— Depth Complexity —= Bandwidth Saving
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Depth Complexity, % Bandwidth Saving
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Frame Number

Depth Complexity Bandwidth Saving
Average 2.31 29.16%
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Banawidth Saving in Texture Data(Blocks)
I
—— Depth Complexity = Bandwidth Saving
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Depth Complexity, % Bandwidth Saving
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Frame Number

Depth Complexity Bandwidth Saving
Average 1.43 4.76%
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Banawidth Saving in Texture Data(Flarge)

I
—— Depth Complexity —= Bandwidth Saving
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conclusions

I Simulation Environment (David Simulator)
= Evaluation for 3D graphics accelerator architecture
» Performance comparison

_JDavid Architecture

= Performing z-test before TBE mapping completion

* 5%~29% bandwidth savings for texture data in Scenes with
1~3 depth complexity

 As the depth complexity grows, the amount of bandwidth
savings become large

— Recently, a 3D graphic application shows high depth complexity

= Texture cache sharing with BE mapping

» Hardware saving from sharing and hardware reduction for BE
mappings
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