A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation

Haseo Ki*

Department of mathematics, Yonsei University, Seoul, 120-749, Republic of Korea
Korea Institute for Advanced Study, Seoul, Republic of Korea

Received 21 August 2011; accepted 23 July 2012

Communicated by Takahiro Kawai

Dedicated to Professor Hiroyuki Yoshida on the occasion of his retirement

Abstract

We show that if for a nonzero complex number c the inverse images $L_1^{-1}(c)$ and $L_2^{-1}(c)$ of two functions in the extended Selberg class are the same, then $L_1(s)$ and $L_2(s)$ must be identical.

© 2012 Elsevier Inc. All rights reserved.

Keywords: The Selberg class; The extended Selberg class; Uniqueness of L-functions

1. Introduction

Automorphic L-functions which generalize the Riemann zeta function play a central role in investigating many arithmetic questions. Essential properties of these L-functions such as Euler products, functional equations and the Ramanujan conjecture can be axiomatized and this is what Selberg did in [6], specifying the following conditions.

(1) (Dirichlet series) For $\sigma > 1$, the L-function $L(s)$ is an absolutely convergent Dirichlet series

$$L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \quad (s = \sigma + it).$$

* Correspondence to: Department of mathematics, Yonsei University, Seoul, 120-749, Republic of Korea.
E-mail address: haseo@yonsei.ac.kr.

0001-8708/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2012.07.027
(2) (Analytic continuation) For some integer $m \geq 0$, the function $(s - 1)^m L(s)$ is entire and of finite order.

(3) (Functional equation) The L-function $L(s)$ satisfies a functional equation of the form

$$
\Phi(s) = \omega \Phi(1 - \overline{s}),
$$

where

$$
\Phi(s) = Q^s \prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j) L(s)
$$

with $Q > 0$, $\lambda_j > 0$, $\Re \mu_j \geq 0$ and $|\omega| = 1$.

(4) (Ramanujan hypothesis) For any $\epsilon > 0$, we have $a(n) \ll n^\epsilon$.

(5) (Euler product) For σ sufficiently large,

$$
\log L(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s}, \quad s = \sigma + it,
$$

where $b(n) = 0$ unless n is a positive power of a prime, and $b(n) \ll n^\theta$ for some $\theta < \frac{1}{2}$.

The set of L-functions which satisfy the conditions (1)–(5) is called the Selberg class and is denoted by \mathcal{S}. Note that the Riemann zeta function, the Dirichlet L-function with a primitive Dirichlet character, the Dedekind zeta function of an algebraic number field and the Hecke L-function with a primitive Hecke character all belong to the Selberg class \mathcal{S}. Kaczorowski and Perelli [4] introduced the extended Selberg class \mathcal{S}^e of not identically vanishing functions $L(s)$ which satisfy the conditions (1)–(3) above. For a function $L(s)$ in the extended Selberg class, we define the degree d as $d = 2 \sum_j \lambda_j$.

In the extended Selberg class \mathcal{S}^e, a natural question concerns the uniqueness of functions. On this topic, Steuding [7, p. 152] proved the following result.

Theorem A. If two functions $L_1(s)$ and $L_2(s)$ satisfy both the conditions (2) and (4) as well as the same functional equation (3) with $a(1) = 1$ and $L_1^{-1}(c_j) = L_2^{-1}(c_j)$ for two distinct complex numbers c_1 and c_2 such that

$$
\liminf_{T \to \infty} \frac{\tilde{N}_{L_1}^{c_1}(T) + \tilde{N}_{L_2}^{c_2}(T)}{N_{L_1}^{c_1}(T) + N_{L_2}^{c_2}(T)} > \frac{1}{2} + \epsilon
$$

for some positive ϵ with either $j = 1$ or $j = 2$, then $L_1 \equiv L_2$.

In Theorem A, the symbol $L^{-1}(c)$ denotes the preimage of c under L, meaning $L^{-1}(c) = \{ s \in \mathbb{C} : L(s) = c \}$. Furthermore, the term $N_L^c(T)$ denotes the number of zeros of $L(s) - c$ in the region given by $0 \leq \Re s \leq T$ and $|t| \leq T$ counting multiplicities, while $\tilde{N}_L^c(T)$ stands for the number of zeros in the same region, but ignoring multiplicities.

Recently, Li [5] has substantially improved Theorem A as follows.

Theorem B. If two functions $L_1(s)$ and $L_2(s)$ satisfy both the conditions (2) and (4) as well as the same functional equation (3) with $a(1) = 1$ and $L_1^{-1}(c_j) = L_2^{-1}(c_j)$ for two distinct complex numbers c_1 and c_2, then $L_1 \equiv L_2$.

The proof of Theorem B is based on Nevanlinna’s theory, in particular on Nevanlinna’s uniqueness theorem: two nonconstant meromorphic functions $f, g : \mathbb{C} \to \mathbb{C}$ must be identically equal if $f^{-1}(c_j) = g^{-1}(c_j)$ for five distinct values $c_j \in \mathbb{C} \cup \{ \infty \}$ (see [3] or [7]).
It is natural to ask whether Theorem B still holds if \(c_1 = c_2 \). In this note, we answer this question for functions in the extended Selberg class by proving the following result.

Theorem 1. If two functions \(L_1(s) \) and \(L_2(s) \) in the extended Selberg class \(S^\sharp \) satisfy the same functional equation with positive degree, if \(a(1) = 1 \) and \(L_1^{-1}(c) = L_2^{-1}(c) \) for a nonzero complex number \(c \), then \(L_1 \equiv L_2 \). The conclusion need not hold for \(c = 0 \) or if the functional equation is of degree zero.

The key point of the proof of Theorem 1 is the following. For a nonzero complex number \(c \), positive degrees of the \(L \)-functions and \(L_1^{-1}(c) = L_2^{-1}(c) \), we observe that for a sufficiently large \(\kappa > 0 \), the zeros of \(\prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j)^{-1} \) and common zeros of \(L_1(s) - c \) and \(L_2(s) - c \) in \(\text{Re} \ s < -\kappa \) should be zeros of \(L_2(s) - L_1(s) \). However, we see that in the region \(\text{Re} \ s < -\kappa \), the zeros of \(L_2(s) - L_1(s) \) are the same as the zeros of \(\prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j)^{-1} \). Based on these observations we are able to prove the first part of our theorem. For degree \(d = 0 \), we can readily construct counterexamples. These imply trivial counterexamples for any degree \(d \) and \(c = 0 \). We shall also give nontrivial counterexamples for \(d \geq 5 \) and \(c = 0 \).

2. Proof of Theorem 1

We divide the proof into two parts. Recall that \(d \) denotes the degree of \(L_1(s) \) and \(L_2(s) \).

2.1. Part I: \(c \neq 0 \) and \(d > 0 \)

Let us assume the contrary, namely that \(L_1 \neq L_2 \). Then there exists a smallest integer \(n_0 > 1 \) such that \(a_1(n_0) = a_2(n_0) \). Condition (1) now implies

\[
L_1(s) = 1 + O \left(2^{-\sigma} \right), \quad L_2(s) = 1 + O \left(2^{-\sigma} \right),
\]

\[
L_2(s) - L_1(s) = \frac{a_2(n_0) - a_1(n_0)}{n_0^s} \left[1 + O \left(\left(\frac{n_0}{n_0 + 1} \right)^\sigma \right) \right], \quad s = \sigma + it, \sigma \to \infty.
\]

Therefore we can choose a constant \(\kappa_0 > 0 \) such that neither of the three functions \(L_1(s) \), \(L_2(s) \) or \(L_2(s) - L_1(s) \) vanishes in the region \(\text{Re} \ s \geq \kappa_0 \).

For any meromorphic function \(f \) and for \(T > 0, \kappa > 0 \), we define \(N_f(T), N_f(T, \kappa) \) as follows.

\[
N_f(T) = \text{the number of zeros of } f, \quad \text{counting multiplicities, in } -T < \text{Re} \ s < -\kappa_0;
\]

\[
N_f(T, \kappa) = \text{the number of zeros of } f, \quad \text{counting multiplicities, in } -T < \text{Re} \ s < -\kappa_0, |\text{Im} \ s| < \kappa.
\]

Note that \(N_f(T) \) can be infinite.

Lemma. (a) There exists a constant \(\kappa > 0 \) such that if \(L(s) \) stands for one of the functions \(L_1(s) \), \(L_2(s) \) or \(L_2(s) - L_1(s) \), we have

\[
N_L(T) = N_L(T, \kappa) = \left(\sum_{j=1}^{K} \lambda_j \right) T + O(1), \quad T > 0.
\]

(b) There exists a constant \(\kappa_1 > 0 \) such that if \(L(s) \) stands for either \(L_1(s) \) or \(L_2(s) \), we have

\[
N_{L-c}(T, \kappa_1) = \left(\sum_{j=1}^{K} \lambda_j \right) T + O(1), \quad T > 0.
\]
Proof of Lemma. (a) Using the functional equation, we can write
\[L_j(s) = \chi(s)\Gamma(1-s) \quad j = 1, 2, \]
where
\[\chi(s) = \omega Q^{1-s} \prod_{j=1}^{K} \Gamma(\lambda_j (1-s) + \mu_j) \prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j). \]

From this equality and the fact that \(L_1(s), L_2(s) \) and \(L_2(s) - L_1(s) \) have no zeros in \(\text{Re} s \geq \kappa_0 \), that \(\Gamma(s) \) is analytic except for (simple) poles at \(s = 0, -1, -2, \ldots \) and that \(\chi(s) \) has no poles in \(|\text{Im} s| \geq \kappa \) for \(\kappa > 0 \) sufficiently large, we readily see that the zeros of \(L_1(s), L_2(s) \) and \(L_2(s) - L_1(s) \) are the same as zeros of \(\prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j)^{-1} \) in the region defined by \(\text{Re} s < -\kappa_0 \) and \(|\text{Im} s| < \kappa \). In fact it suffices to find the number of poles of \(\prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j) \) in \(-T < \text{Re} s < -\kappa_0 \). The observation that \(\Gamma(s) \) has (simple) poles only at \(s = -n \) \((n = 0, 1, 2, \ldots)\) then completes the proof of part (a) of the Lemma.

(b) We need the following claim.

Claim. Let \(r > 0 \). Then there exist constants \(T_r > 0 \) and \(\eta > 0 \) such that for any \(T > T_r \), we have
\[|\chi(s)| > r \quad \text{for} \quad \text{Re} s = -T^* \quad \text{and} \quad |\text{Im} s| < \eta \quad \text{or} \quad \text{Re} s < -T_r \quad \text{and} \quad |\text{Im} s| = \eta, \]
where \(T^* \) is a real number in \((T, T + 1)\).

Proof of Claim. Fix a constant \(\eta \) larger than \(1 + \left| \frac{\text{Im} \mu_j}{\lambda_j} \right| \) for \(1 \leq j \leq K \). From [2, pp. 47 and 3], we recall that
\[\Gamma(s) = e^{(s-\frac{1}{2})\log(s)-s} (2\pi)^{\frac{1}{2}} \left[1 + O \left(|s|^{-1} \right) \right] (\arg s < \pi), \]
\[\Gamma(s) = \frac{\pi}{\Gamma(1-s) \sin \pi s}. \]

This implies
\[\chi(s) = \omega Q^{1-2s} \prod_{j=1}^{K} \left[\Gamma(\lambda_j (1-s) + \mu_j) \Gamma(1-\lambda_j s - \mu_j) \frac{\sin \pi(\lambda_j s + \mu_j)}{\pi} \right], \]
\[\left| \chi(s) \right| \prod_{j=1}^{K} \sin \pi(\lambda_j s + \mu_j) \rightarrow \infty \quad (\text{Re} s \rightarrow -\infty \text{ and } |\text{Im} s| \leq \eta). \]

It therefore suffices to show that there exists a fixed constant \(\delta > 0 \) such that for any \(T > 0 \),
\[\prod_{j=1}^{K} \sin \pi(\lambda_j s + \mu_j) > \delta, \quad |\text{Im} s| = \eta \quad \text{or} \quad \text{Re} s = -T^* \quad \text{and} \quad |\text{Im} s| < \eta, \quad (*) \]
where \(T^* \) is a real number in the interval \((T, T + 1)\). This can be seen as follows. Since the function \(\prod_{j=1}^{K} \sin \pi(\lambda_j s + \mu_j) \) has zeros only at \(s = -\frac{n+\mu_j}{\lambda_j}, j = 1, \ldots, K, n = 0, \pm 1, \pm 2, \ldots \), we see that, counting multiplicities, the number of zeros of the function in the region \(-T - 1 <
\[\Re s < -T \] is less than \(\lambda^* := 1 + \sum_{j=1}^{K} \frac{1}{\kappa_j} \). Therefore there exist \(a_T, b_T \) in \((T, T + 1)\) such that
\[b_T - a_T = \frac{1}{\kappa^*} \] and \(\prod_{j=1}^{K} \sin \pi (\lambda_j s + \mu_j) \) has no zeros in \(-b_T \leq \Re s \leq -a_T\). Setting \(T^* = \frac{ar + bT}{2} \), the inequality (\(\star \)) follows for a fixed constant \(\delta > 0 \) and the claim is proved. \(\square \)

In addition to the positive real number \(\kappa \) chosen in the proof of part (a) of the lemma, we set \(r = 2|c| \). By the Claim and the fact that \(L_1(s), L_2(s) \sim 1 \) for \(\Re s \to \infty \), we can choose a constant \(\kappa_1 > \kappa \) and sequences \(\langle a_n \rangle \) and \(\langle b_n \rangle \) with \(\kappa_0 < a_n < b_n < a_n + 1(n = 1, 2, 3, \ldots) \) and \(a_n \to \infty \) such that we get
\[|L_j(s) - (L_j(s) - c)| = |c| < |\chi(s)L_j(1 - \overline{s})| = |L_j(s)|, \quad j = 1, 2 \]
for \(-b_n \leq \Re s \leq -a_n(n = 1, 2, 3, \ldots) \) and \(|\Im s| \leq \kappa_1 \) or \(\Re s < -\kappa_1 \) and \(|\Im s| = \kappa_1 \). Together with Rouché’s theorem, this estimate and part (a) now imply part (b) of the lemma. \(\square \)

We now prove part I of Theorem 1. Observe that \(L_j(s) \) and \(L_j(s) - c, j = 1, 2 \) do not have zeros in common; furthermore, in the region \(\Re s < -\kappa \) for \(\kappa > 0 \) sufficiently large, zeros of \(\prod_{j=1}^{K} \Gamma(\lambda_j s + \mu_j)^{-1} \) (which are zeros of \(L_j(s), j = 1, 2 \)) and common zeros of \(L_1(s) - c \) and \(L_2(s) - c \) should be zeros of \(L_2(s) - L_1(s) \). Thus it is easy to see that
\[N_{L_2-L_1}(T) \geq N_{L_1}(T) + N_{L_1-c}(T) + O(1), \]
where
\[N_{L_1-c}(T) = \text{the number of zeros (ignoring multiplicities) of } L_1(s) - c \]
in the region \(-T < \Re s < -\kappa_0 \) and \(|\Im s| < \kappa_1 \).

By this inequality and part (a) of the Lemma, we have
\[N_{L_1-c}(T) = O(1). \]
On the other hand, part (b) of the lemma implies
\[N_{L_1-c}(T) \to \infty, \quad T \to \infty. \]
From this contradiction we conclude that we must have \(L_1 \equiv L_2 \).

2.2. Part II: \(c = 0 \) or \(d = 0 \)

We shall give counterexamples for each case.

Case (i) \(c = 0 \) and \(d = 0 \).

Let \(a_1 \) and \(a_2 \) be distinct complex numbers. We set
\[
l_1(s) = 1 + \frac{a_1}{2^s} + \frac{3a_1/\sqrt{6}}{3^s} + \frac{\sqrt{6}}{6^s},
\]
\[
l_2(s) = 1 + \frac{a_2}{2^s} + \frac{3a_2/\sqrt{6}}{3^s} + \frac{\sqrt{6}}{6^s}.
\]
It is easy to see that
\[(\sqrt{6})^s l_j(s) = (\sqrt{6})^{1-s} \overline{l_j(1 - \overline{s})}, \quad j = 1, 2. \]

We set
\[L_1(s) = l_1^2(s) l_2(s) \quad \text{and} \quad L_2(s) = l_1(s) l_2^2(s). \]
Clearly \(L_1(s) \) and \(L_2(s) \) are in the extended Selberg class \(\mathcal{S}^\sharp \) and we have \(L^{-1}(0) = L_2^{-1}(0) \), but \(L_1 \neq L_2 \).

Case (ii) \(c = 0 \) and \(d > 0 \).

Starting with the examples in Case (i), we can find an obvious counterexample consisting of \(L_1(s)L(s) \) and \(L_2(s)L(s) \) for any \(L(s) \) in \(\mathcal{S}^\sharp \). On top of that, we shall now provide a nontrivial counterexample for each case \(d \geq 5 \) and \(c = 0 \).

We let \(\chi_1 \) be the primitive character modulo 5 such that \(\chi_1(2) = i \) and we set \(\chi_2 = \bar{\chi}_1 \) and

\[
\tau(\chi_j) = \sum_{m=1}^{4} \chi_j(m)e^{\frac{2\pi mi}{5}}, \quad j = 1, 2.
\]

Then we have \(\tau(\chi_1)\tau(\chi_2) = -5 \), the two Dirichlet \(L \)-functions \(L(s, \chi_j) \) \((j = 1, 2)\) are entire and satisfy the functional equations

\[
\left(\frac{\pi}{5}\right)^{-\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) L(s, \chi_j) = \tau(\chi_j) \left(\frac{\pi}{5}\right)^{-\frac{1-s}{2}} \Gamma\left(\frac{2-s}{2}\right) L(1-s, \chi_j), \quad j = 1, 2;
\]

see [1, pp. 69–71]. These functional equations readily imply

\[
\left(\frac{\pi^2}{5^2}\right)^{-\frac{s}{2}} \Gamma^2\left(\frac{s+1}{2}\right) L(s, \chi_1)L(s, \chi_2)
\]

\[
= \left(\frac{\pi^2}{5^2}\right)^{-\frac{1-s}{2}} \Gamma^2\left(\frac{2-s}{2}\right) L(1-s, \chi_1)L(1-s, \chi_2).
\]

Recall from [8, pp. 282–283] that for some \(\theta \in (0, \pi/4) \), we have

\[
\left(\frac{\pi}{5}\right)^{-\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) l_\theta(s) = \left(\frac{\pi}{5}\right)^{-\frac{1-s}{2}} \Gamma\left(\frac{2-s}{2}\right) l_\theta(1-s),
\]

where

\[
l_\theta(s) = \frac{1}{2} \sec \theta \left[e^{-i\theta} L(s, \chi_1) + e^{i\theta} L(s, \chi_2) \right] = 1 + \frac{\tan \theta}{2^s} - \frac{\tan \theta}{3^s} - \frac{1}{4^s} + \frac{1}{6^s} + \cdots.
\]

Note that \(l_\theta(s) \) is entire. We fix an integer \(m \geq 3 \) and set

\[
L_1(s) = L(s, \chi_1)L(s, \chi_2)l_\theta^m(s) \quad \text{and} \quad L_2(s) = L^2(s, \chi_1)L^2(s, \chi_2)l_\theta^{m-2}(s).
\]

From the functional equations for \(L(s, \chi_1)L(s, \chi_2) \) and \(l_\theta(s) \), we have

\[
\left(\frac{\pi^{m+2}}{5^{m+2}}\right)^{-\frac{s}{2}} \Gamma^{m+2}\left(\frac{s+1}{2}\right) L_j(s) = \left(\frac{\pi^{m+2}}{5^{m+2}}\right)^{-\frac{1-s}{2}} \Gamma^{m+2}\left(\frac{2-s}{2}\right) L_j(1-s),
\]

\[
j = 1, 2.
\]

We see that \(L_1(s) \) and \(L_2(s) \) are in \(\mathcal{S}^\sharp \), also \(L_1^{-1}(0) = L_2^{-1}(0) \), but \(L_1 \neq L_2 \).

Case (iii) \(c \neq 0 \) and \(d = 0 \).

We set \(c = 1 \),

\[
L_1(s) = 1 + \frac{\sqrt{6}}{2^s} + \frac{2}{4^s},
\]
\[L_2(s) = 1 + \frac{3\sqrt{6}}{2^s} + \frac{18\sqrt{6}}{4^s} + \frac{6\sqrt{6}}{8^s} + \frac{4}{16^s}. \]

It is easy to see that \(L_1(s) \) and \(L_2(s) \) are in \(\mathcal{S}^2 \) and we have
\[L_2(s) - 1 = \frac{4^s}{2} (L_1(s) - 1)^3. \]

We therefore obtain \(L_1^{-1}(1) = L_2^{-1}(1) \), but \(L_1 \not\equiv L_2 \).

This completes the proof of part II of the theorem.

Acknowledgments

The author thanks the referee for valuable comments and suggestions. The author was supported by the Mid-Career Researcher Program through an NRF grant funded by MEST 2010-0008706.

References