On the zeros of degree one L-functions from the extended Selberg class

by

HASEO KI (Seoul) and YOONBOK LEE (Pohang and Seoul)

1. Introduction. In [13], Selberg introduced the class S consisting of the functions $F(s)$ satisfying the following conditions.

(1) (Dirichlet series) For $\sigma > 1$, $F(s)$ is an absolutely convergent Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \quad (s = \sigma + it).$$

(2) (Analytic continuation) For some integer $m \geq 0$, $(s - 1)^m F(s)$ is an entire function of finite order.

(3) (Functional equation) $F(s)$ satisfies a functional equation of the form

$$\Phi(s) = \omega \overline{\Phi}(1 - s),$$

where

$$\Phi(s) = Q^s \prod_{j=1}^{r} \Gamma(\lambda_j s + \mu_j) F(s)$$

with $\overline{\Phi}(s) = \overline{\Phi(s)}$, $Q > 0$, $\lambda_j > 0$, $\text{Re} \mu_j \geq 0$ and $|\omega| = 1$.

(4) (Ramanujan hypothesis) For every $\epsilon > 0$, $a(n) \ll n^\epsilon$.

(5) (Euler product) For σ sufficiently large,

$$\log F(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s} \quad (s = \sigma + it),$$

where $b(n) = 0$ unless n is a positive power of a prime, and $b(n) \ll n^\theta$ for some $\theta < 1/2$.

2010 Mathematics Subject Classification: Primary 11M41.

Key words and phrases: extended Selberg class, non-trivial zero, Riemann hypothesis, Euler product, mean motion.
For a function $F(s)$ in the Selberg class S, we define $d = 2 \sum_j \lambda_j$ to be the degree of F. We denote by S_d the subclass of functions of degree d in S. We note that the structure of S_d has been completely determined for $0 \leq d \leq 1$. From the work of Conrey and Ghosh [4], we have $S_0 = \{1\}$ and $S_d = \emptyset$ for $0 < d < 1$. For $d = 1$, by Kaczorowski and Perelli [9], the functions $F \in S_1$ are of the forms $F(s) = \zeta(s)$ or $F(s) = L(s + i\theta, \chi)$ with a primitive Dirichlet character χ and $\theta \in \mathbb{R}$. On the other hand, we denote by $S^\#_d$ the subclass of functions of degree d in S. We note that the structure of $S^\#_d$ has been completely determined for $0 \leq d \leq 1$. From the work of Conrey and Ghosh [4], we have $S^\#_0 = \{1\}$ and $S^\#_d = \emptyset$ for $0 < d < 1$. For $d = 1$, by Kaczorowski and Perelli [9], the functions $F \in S^\#_1$ are of the forms $F(s) = \zeta(s) = L(s + i\theta, \chi)$ with a primitive Dirichlet character χ and $\theta \in \mathbb{R}$. On the other hand, we denote by $S^\#_d$ the extended Selberg class of functions satisfying conditions (1)–(3), and we define $S^\#_d$ similarly to S_d. Theorems 1 and 2 in [9] describe the structure of $S^\#_d$ for $0 \leq d \leq 1$. If $d = 0$, the functional equation is $Q^*F(s) = \omega Q^{1-s}F(1-s)$. The proof of [9, Theorem 1] shows that the Dirichlet series $F(s) = \sum_{n=1}^{\infty} a(n)/n^s \in S^\#_0$ is absolutely convergent in the whole complex plane. Thus, we have

$$\sum_{n=1}^{\infty} a(n) \left(\frac{Q^2}{n} \right)^s = \omega Q \sum_{n=1}^{\infty} \overline{a(n)} n^{-n^s}. $$

We let $q = Q^2$; then $a(n) = 0$ for $n \nmid q$. For $n \mid q$, we have

$$a(n) = \frac{\omega n}{\sqrt{q}} a \left(\frac{q}{n} \right).$$

Theorem A (Theorem 1 of [9]).

1. If $0 < d < 1$, then $S^\#_d = \emptyset$. If $F \in S^\#_0$, then $q \in \mathbb{N}$, the pair (q, ω) is an invariant of $F(s)$ and $S^\#_0$ is the disjoint union of the subclasses $S^\#_0(q, \omega)$ with $q \in \mathbb{N}$ and $|\omega| = 1$.

2. Every $F \in S^\#_0(q, \omega)$ with q and ω as above is a Dirichlet polynomial of the form

$$F(s) = \sum_{n|q} \frac{a(n)}{n^s}. $$

For $d = 1$, we use the notation

$$\beta = \prod_{j=1}^{r} \lambda_j^{-2\lambda_j}, \quad \xi = 2 \sum_{j=1}^{r} (\mu_j - 1/2) = \eta + i\theta, \quad q = \frac{2\pi Q^2}{\beta}, $$

$$\omega^* = \omega e^{-i\pi(\eta + 1)/2} \left(\frac{Q^2}{\beta} \right)^{i\theta} \prod_{j=1}^{r} \lambda_j^{-2i \text{Im} \mu_j}. $$

If χ is a Dirichlet character modulo q, we denote by f_χ its conductor, and by χ^* the primitive character inducing χ. We denote by ω_{χ^*} and Q_{χ^*} the ω-factor and the Q-factor in the standard functional equation for $L(s, \chi^*)$, i.e., $\omega_{\chi^*} = \tau(\chi^*)/a \sqrt{f_\chi}$, where $\tau(\chi^*)$ is the Gauss sum, $a = 0$ if $\chi(-1) = 1$.
and \(a = 1\) if \(\chi(-1) = -1\), and \(Q_{\chi^*} = \sqrt{f_{\chi}/\pi}\). Moreover, we write
\[
\mathcal{X}(q, \xi) = \left\{ \chi \mod q \mid \chi(-1) = 1 \right\} \quad \text{if } \eta = -1,
\]
\[
\left\{ \chi \mod q \mid \chi(-1) = -1 \right\} \quad \text{if } \eta = 0.
\]
\(\chi_0\) denotes the principal character modulo \(q\).

Theorem B (Theorem 2 of [9]).

1. *If \(F \in S_1^\#\), then \(q \in \mathbb{N}\) and \(\eta \in \{-1, 0\}\). The triple \((q, \xi, \omega^*)\) is an invariant of \(F(s)\), and \(S_1^\#\) is the disjoint union of the subclasses \(S_1^\#(q, \xi, \omega^*)\) with \(q \in \mathbb{N}\), \(\eta \in \{-1, 0\}\), \(\theta \in \mathbb{R}\) and \(|\omega^*| = 1\). Moreover, \(a(n) n^\theta\) is periodic with period \(q\).

2. *Every \(F \in S_1^\#(q, \xi, \omega^*)\) with \(q, \xi\) and \(\omega^*\) as above can be uniquely written as*
\[
F(s) = \sum_{\chi \in \mathcal{X}(q, \xi)} P_\chi(s + i\theta)L(s + i\theta, \chi^*),
\]

where \(P_\chi \in S_0^\#(q/\chi, \omega^ \bar{\omega}_{\chi^*})\). Moreover, \(P_{\chi_0}(1) = 0\) if \(\theta \neq 0\).*

Bombieri and Hejhal [2] studied the distribution of zeros of the linear combinations \(F(s) = \sum_{j=1}^J b_j e^{i\alpha_j} L_j(s)\) of various \(L\)-functions with the same gamma factor. Assuming an orthonormality condition on \(a_j(p)\) (where \(a_j(n)\) are the coefficients of \(L_j(s)\)), the generalized Riemann hypothesis for \(L_j(s)\) and a weak condition on the spacing of zeros of \(L_j(s)\), they proved that almost all zeros of \(F(s)\) are simple and on the critical line \(\Re s = 1/2\). Hejhal [6] studied the behavior of zeros of \(F(s)\) near the critical line and announced that the true order of the number of zeros of \(F(s)\) in \(\Re s \geq \sigma\), \(T \leq \Im s \leq T + H\) is
\[
H \frac{1}{(\sigma - 1/2)\sqrt{\log \log T}}
\]
for \(1/2 + (\log \log T)\kappa/\log T \leq \sigma \leq 1/2 + (\log T)^{-\delta}\), \(c_1 T^w \leq H \leq c_2 T\), \(\kappa > 2\) with possibly few exceptional \(\{b_j\}_{j=1}^J\). Note that this result for the special case \(J = 2\) was also justified by the same author in [5].

Recently, the second author [11] investigated the off-line zeros of the Epstein zeta function \(E(s, Q)\) associated to the quadratic form \(Q(x, y) = ax^2 + bxy + cy^2\), \(a > 0\), \(b^2 - 4ac < 0\), \(a, b, c \in \mathbb{Z}\). It is a classical example that belongs to the class \(S_2^\#\). We find the number of zeros \(N_E(\sigma_1, \sigma_2; 0, T)\) in the rectangular region \(\sigma_1 < \Re s < \sigma_2\), \(0 < \Im s < T\) to be \(c(\sigma_1, \sigma_2)T + o(T)\) for \(1/2 < \sigma_1 < \sigma_2\), which improves Voronin’s result \(N_E(\sigma_1, \sigma_2; 0, T) \gg T\) for \(1/2 < \sigma_1 < \sigma_2 < 1\) (see [14] or Chapter 7 of [10]) based on the joint distribution for Hecke \(L\)-functions. We observe that one can apply our method to degree one objects.
For $F \in S^\#$, Kaczorowski and Kulas [8] defined the density property to be $N_F(\sigma, T) = o(T)$ for every fixed $1/2 < \sigma < 1$. This property classifies the elements in $S^\#_1$. If $F \in S^\#_1$ has the density property, then $F(s + i\theta) = P(s)L(s, \chi)$ for certain real θ, a Dirichlet polynomial $P \in S^\#_0$ and a primitive Dirichlet character χ. Otherwise, $F(s + i\theta) = \sum_{j \leq J} P_j(s)L(s, \chi_j)$ for $J \geq 2$, $\theta \in \mathbb{R}$, Dirichlet polynomials $P_j \in S^\#_0$ and primitive inequivalent Dirichlet characters χ_j. For $F \in S^\#_1$ violating the density property, they obtain $N_F(\sigma_1, \sigma_2; 0, T) \gg T$ for $1/2 < \sigma_1 < \sigma_2 < 1$. Saias and Weingartner [12] extend their method to the strip $1 < \Re s < 1 + \eta$ for some small $\eta > 0$ and achieve $N_F(\sigma_1, \sigma_2; 0, T) \gg T$ for $1/2 < \sigma_1 < \sigma_2 < 1 + \eta$. Our main purpose is to improve these results by obtaining an asymptotic formula for $N_F(\sigma_1, \sigma_2; 0, T)$.

By Theorems A and B, we can write the function $E(s + i\theta) \in S^\#_1$ as

$$E(s) = \sum_{j=1}^{J} h_j(p_1^{-s}, \ldots, p_k^{-s}) \prod_{p > p_k} \left(1 - \frac{\chi_j(p)}{p^s}\right)^{-1}$$

for some integer $k > 0$, where

$$h_j(x_1, \ldots, x_k) = \tilde{h}_j(x_1, \ldots, x_k) \prod_{l \leq k} (1 - \chi_j(p_l)x_l)^{-1}$$

and \tilde{h}_j is a polynomial of k variables. Let

$$E_n(s) = \sum_{j=1}^{J} h_j(p_1^{-s}, \ldots, p_k^{-s}) \prod_{p_k < p \leq p_n} \left(1 - \frac{\chi_j(p)}{p^s}\right)^{-1}$$

for $n > k$. Then, $E_n(s)$ converges in the mean with index 2 towards $E(s)$ in $[1/2, \infty]$ by Parseval’s identity for almost periodic functions, i.e.,

$$\limsup_{T \to \infty} \frac{1}{T} \int_{1}^{T} \left|E(\sigma + it) - E_n(\sigma + it)^2 d\sigma dt \to 0$$

as $n \to \infty$ for any $1/2 < \alpha < \beta$ (for the method of proof, see Proposition 2.3 of [11]). Applying Lemma 2.3 to $E_n(s)$, we get an asymptotic formula for $N_{E_n}(\sigma_1, \sigma_2; 0, T)$. The theory of mean motions partially preserves this property through the convergence in the mean with index $p > 0$ via Lemma 2.4.

If $J = 1$, then we encounter the Riemann hypothesis. Our method does not work in this case, since we are using the Euler product $\log \zeta(s) = \sum_p \sum_{m=1}^{\infty} \frac{1}{mp^{ms}}$ and this cannot give any information about $\zeta(s) = 0$. Concerning this matter, see Borchsenius and Jessen [3]. From now on, we only consider the case $J > 1$.
Zeros of degree one L-functions

We consider \(S_1^\#(p, \xi, \omega^*) \) for \(p \) prime or 1. By (1.1) and Theorem B, we have

\[
\tilde{h}_j = a_j(1) \text{ or } a_j(1) + \frac{\omega a_j(1)}{p^{s-1/2}},
\]

and as a result \(\tilde{h}_j \neq 0 \) for \(\Re s > 1/2 \). In this case, the method in \([1]\) works, and we have the following theorem.

Theorem 1.1. Let \(E(s + i\theta) \in S_1^\#(p, \xi, \omega^*) \) for \(p \) prime or \(p = 1 \), and \(|\omega| = 1 \), and let \(1/2 < \sigma_1 < \sigma_2 \). Suppose \(J > 1 \) in (1.2). Then

\[
N_E(\sigma_1, \sigma_2; 0, T) = c(\sigma_1, \sigma_2)T + o(T)
\]
as \(T \to \infty \). The constant \(c(\sigma_1, \sigma_2) \) can be represented as an integral \(\int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma \) for the density function \(H_\sigma(x) \) of some distribution \(\mu_\sigma \), and \(c(\sigma_1, \sigma_2) > 0 \) if \(1/2 < \sigma_1 \leq 1 \). In particular, for \(\sigma_0 > 1/2 \), the number of zeros on the line segment \(\Re s = \sigma_0, 0 < \Im s < T \) is \(o(T) \).

When \(q \) is a prime power, the \(\tilde{h}_j \) are polynomials of the same single variable by Theorems A(2) and B(2). If these polynomials have the same factor with \(cT + o(T) \) zeros on the line segment \(\Re s = \sigma_0, 0 < \Im s < T \) for some \(1/2 < \sigma_0 < 1 \), then we cannot expect the integral form of the constant \(c(\sigma_1, \sigma_2) \) in general. Indeed, we may take \(\tilde{h}_j(p^{-s}) = 1 + 2p^{3/4-s} + p^{1-2s} \) by letting \(\omega = a(1) = 1 \), and \(a(p) = 2p^{-3/4} \). Then the function \(s \mapsto \tilde{h}_j(p^{-s}) \) has \(\frac{\log pT}{2\pi} + O(1) \) zeros on \(\Re s = \log(p^{3/4} + \sqrt{p^{3/2} - p})/\log p, 0 < \Im s < T \). We still have the following.

Theorem 1.2. Let \(E(s + i\theta) \in S_1^\#(q, \xi, \omega^*) \) for \(q \) a prime power, and let \(1/2 < \sigma_1 < \sigma_2 \). Suppose \(J > 1 \) in (1.2). Then

\[
N_E(\sigma_1, \sigma_2; 0, T) = c(\sigma_1, \sigma_2)T + o(T)
\]
as \(T \to \infty \), and \(c(\sigma_1, \sigma_2) > 0 \) if \(1/2 < \sigma_1 \leq 1 \). Suppose that the closed interval \([\sigma_1, \sigma_2]\) does not contain the real part of exceptional points satisfying \(h_j = 0 \). Then the constant \(c(\sigma_1, \sigma_2) \) can be represented as an integral \(\int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma \) for the density function \(H_\sigma(x) \) of some distribution \(\mu_\sigma \). In this case for \(\sigma_0 \in [\sigma_1, \sigma_2] \), the number of zeros on the line segment \(\Re s = \sigma_0, 0 < \Im s < T \) is \(o(T) \).

For general \(q \), we could also prove a similar theorem, although it is not easy to classify the common zeros of \(\tilde{h}_j \) with multiple variables. We will discuss and prove a general theorem in Section 3.

2. Lemmas. We begin with the work of Jessen and Tornhave \([7]\) that concerns zeros of a Dirichlet series in the region of its absolute convergence. For the basic theory of almost periodic functions, we refer to \([1]\).
Lemma 2.1 (Theorem 8 of [7]). A function \(f(s) \) almost periodic in \([\alpha, \beta]\) and not identically zero has no zeros in the substrip \((\alpha \leq \alpha_0 < \beta, \beta_0 \leq \beta)\), if and only if its Jensen function

\[
\varphi(\sigma) = \lim_{T_2-T_1 \to \infty} \frac{1}{T_2-T_1} \int_{T_1}^{T_2} \log |f(\sigma + it)| \, dt
\]

is linear in the interval \((\alpha_0, \beta_0)\).

Lemma 2.2 (Theorem 31 of [7]). For an ordinary Dirichlet series

\[
f(s) = \sum_{n=n_0}^{\infty} \frac{a_n}{n^s}, \quad a_{n_0} \neq 0,
\]

with the uniform convergence abscissa \(\alpha\), the Jensen function \(\varphi(\sigma)\) has on every half-line \(\sigma > \alpha_1 \) \((> \alpha)\) only a finite number of linearity intervals and a finite number of points of non-differentiability. The values of \(\varphi'(\sigma)\) in the linearity intervals belong to the set of numbers \(-\log n, n \geq n_0\). For \(\sigma > \) (some) \(\sigma_0\), we have

\[
\varphi(\sigma) = -(\log n_0)\sigma + \log |a_{n_0}|.
\]

For an arbitrary strip \((\sigma_1, \sigma_2)\), where \(\alpha < \sigma_1 < \sigma_2 < \infty\), the relative frequency \(H(\sigma_1, \sigma_2)\) of zeros exists and is determined by

\[
H(\sigma_1, \sigma_2) = \frac{1}{2\pi} (\varphi'(\sigma_2-) - \varphi'(\sigma_1+)).
\]

The following lemma guarantees the existence of the second derivative of Jensen functions for almost periodic functions and gives another representation by a certain distribution. The proof can be found in §9 of [3].

Lemma 2.3 (Proposition 2.1 of [11]). Let \(f(s)\) be almost periodic in the strip \([\alpha, \beta]\) and not identically zero. Let \(\nu_\sigma\) be the asymptotic distribution function of \(f(\sigma + it)\) with respect to \(|f'(\sigma + it)|^2\). Suppose \(\nu_\sigma\) is absolutely continuous for every \(\sigma\) and its density \(G_\sigma(x)\) is a continuous function of \(x\) and \(\sigma\). Then the Jensen function \(\varphi_{f-x}(\sigma)\) is twice differentiable with

\[
\varphi''_{f-x}(\sigma) = 2\pi G_\sigma(x).
\]

The next lemma is an extension of Lemma 2.3 which is applicable inside the critical strip and which plays the main role in this method.

Lemma 2.4 (Theorem 1 of [3]). Let \(-\infty \leq \alpha < \alpha_0 < \beta_0 < \beta \leq \infty\) and let \(f_1(s), f_2(s), \ldots\) be a sequence of functions almost periodic in \([\alpha, \beta]\) converging uniformly in \([\alpha_0, \beta_0]\) towards a function \(f(s)\). Suppose that none of the functions is identically zero and \(f(s)\) may be continued as a regular function in the half-strip \(\alpha < \sigma < \beta, t > \gamma_0\), and that \(f_n(s)\) converges in
mean with an index \(p > 0 \) towards \(f(s) \) in \([\alpha, \beta] \). Then the Jensen function
\[
\varphi_f(\sigma) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \log |f(\sigma + it)| \, dt
\]
eexists uniformly in \([\alpha, \beta] \) for some \(\gamma > \gamma_0 \), and \(\varphi_f(n) \) converges uniformly in \([\alpha, \beta] \) towards \(\varphi_f(\sigma) \) as \(n \to \infty \). The function \(\varphi_f(\sigma) \) is convex in \((\alpha, \beta) \), and for every strip \((\sigma_1, \sigma_2) \) where \(\alpha < \sigma_1 < \sigma_2 < \beta \), the two relative frequencies of zeros defined by
\[
\mathcal{H}_f(\sigma_1, \sigma_2) = \lim_{T \to \infty} \frac{1}{T} \sum_{n=1}^T \varphi'_f(\sigma) \, d\sigma + o(T)
\]
satisfy the inequalities
\[
\frac{1}{2\pi} (\varphi'_f(\sigma_2) - \varphi'_f(\sigma_1)) \leq \mathcal{H}_f(\sigma_1, \sigma_2) \leq \mathcal{H}_f(\sigma_1, \sigma_2)
\]
\[
\leq \frac{1}{2\pi} (\varphi'_f(\sigma_2) + \varphi'_f(\sigma_1)).
\]
Suppose further that \(\varphi_f(\sigma) \) is twice differentiable. Then
\[
N_f(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} \varphi''_f(\sigma) \, d\sigma + o(T)
\]
for \(\alpha < \sigma_1 < \sigma_2 < \beta \) as \(T \to \infty \).

Together with the above lemmas, we investigate the Fourier transforms of certain distributions. We need two more lemmas, in which we use the following notation:
\[
\mathcal{L}_n(\sigma, \Theta; \chi_j) = L_k(\sigma, \vartheta; \chi_j) L_{k,n}(\sigma, \vartheta; \chi_j),
\]
\[
L_k(\sigma, \vartheta; \chi_j) = h_j(p_1^{-\sigma} e^{2\pi i \vartheta_1}, \ldots, p_k^{-\sigma} e^{2\pi i \vartheta_k}),
\]
\[
L_{k,n}(\sigma, \vartheta; \chi_j) = \prod_{k < l \leq n} \left(1 - \frac{\chi_j(p_1 e^{2\pi i \vartheta_1})}{p_l^{\sigma}} \right)^{-1},
\]
\[
M_{n,\sigma}(\vartheta) = (\log L_k, n(\sigma, \vartheta; \chi_1), \ldots, \log L_{k,n}(\sigma, \vartheta; \chi_j)),
\]
\[
E_{n,\sigma}(\Theta) = \sum_{j=1}^J \mathcal{L}_n(\sigma, \Theta; \chi_j)
\]
for \(n > k \), \(\Theta = (\vartheta_1, \vartheta) \in [0, 1]^n \), \(\vartheta = (\vartheta_1, \ldots, \vartheta_k) \in [0, 1]^k \) and \(\vartheta = (\vartheta_{k+1}, \ldots, \vartheta_n) \in [0, 1]^{n-k} \). Let \(\mu_{n,\sigma} \) be the distribution function of \(E_{n,\sigma} \) with respect to \(|\vartheta| \, E_{n,\sigma}|^2 \). Its Fourier transform is
\[
\hat{\mu}_{n,\sigma}(y) = \int_{[0,1]^n} e^{i \sum_j \mathcal{L}_n(\sigma, \Theta; \chi_j) \cdot y} \left| \sum_{j=1}^J \mathcal{L}_n'(\sigma, \Theta; \chi_j) \right|^2 d\Theta.
\]
LEMMA 2.5. For σ > 1/2, δ > 0 and j ≤ J, define

\[A_{j,\sigma}(\delta) = \{ \theta \in [0, 1]^k : |\hat{\nu}_j(p_1^{-\sigma} e^{2\pi i \theta_1}, \ldots, p_k^{-\sigma} e^{2\pi i \theta_k})| < \delta \} \]

Then for any integer K ≤ J we have

\[\hat{\mu}_{n,\sigma}(y) \ll \bigcap_{r_1 < \cdots < r_K \leq J} (A_{r_1,\sigma}(\delta) \cup \cdots \cup A_{r_K,\sigma}(\delta)) + |\delta y|^{-K} \]

as \(|y| \to \infty\), where the corresponding constant does not depend on n.

Proof. We write

\[\hat{\mu}_{n,\sigma}(y) = \sum_{l_1,l_2[0,1]^n} e^{i \sum_j L_n(\sigma,\theta_j)\cdot y} \frac{L'_{n,\sigma}(\sigma,\theta;\chi_{l_1})}{L_{n,\sigma}(\sigma,\theta;\chi_{l_2})} d\theta. \]

Define set functions

\[\lambda_{n,\sigma;l_1,l_2}(B) = \left\{ \frac{L'_{k,n}(\sigma,\theta;\chi_{l_1})}{L_{k,n}(\sigma,\theta;\chi_{l_2})} \right\} \bigcap_{M_{n,\sigma}(B)} \]

\[\lambda_{n,\sigma;l}(B) = \left\{ \frac{L'_{k,n}(\sigma,\theta;\chi_{l_1})}{L_{k,n}(\sigma,\theta;\chi_{l_2})} \right\} \bigcap_{M_{n,\sigma}(B)} \]

\[\lambda_{n,\sigma}(B) = \big| M_{n,\sigma}^{-1}(B) \big|, \]

for any Borel set \(B \subset \mathbb{C}^J \). Applying the identity

\[ab = \frac{1}{4} \sum_{m=1}^{4} i^m |a + i^m b|^2, \quad a, b \in \mathbb{C}, \]

one can prove that \(\hat{\mu}_{n,\sigma}(y) \) is a linear combination of at most four absolutely continuous distribution functions. (See [11] for details.) We denote by \(G_{n,\sigma;l_1,l_2}(x) \), \(G_{n,\sigma;l}(x) \), \(G_{n,\sigma}(x) \) the densities of \(\lambda_{n,\sigma;l_1,l_2}, \lambda_{n,\sigma;l}, \lambda_{n,\sigma} \), respectively. By Theorem 6 of [3], all these densities have majorants of the form \(K e^{-\lambda|x|^2} \), and their partial derivatives of order \(\leq q \) have majorants of the form \(K_q e^{-\lambda|x|^2} \) for \(n \geq n_q \). Thus,

\[\hat{\mu}_{n,\sigma}(y) = \sum_{l_1,l_2 [0,1]^n} e^{i \sum_j (L_k(\sigma,\theta;\chi_j) e^{x_j}) \cdot y + x_{l_1} + x_{l_2} \mathcal{G}_{n,\sigma;l_1,l_2}(x,\theta)} dx d\theta, \]

where

\[\mathcal{G}_{n,\sigma;l_1,l_2}(x,\theta) \]

\[= L_k'(\sigma,\theta;\chi_{l_1})L_k'(\sigma,\theta;\chi_{l_2})G_{n,\sigma}(x) + L_k(\sigma,\theta;\chi_{l_1})L_k(\sigma,\theta;\chi_{l_2})G_{n,\sigma;l_1,l_2}(x) \]

\[+ L_k(\sigma,\theta;\chi_{l_1})L_k'(\sigma,\theta;\chi_{l_2})G_{n,\sigma;l}(x) + L_k(\sigma,\theta;\chi_{l_1})L_k'(\sigma,\theta;\chi_{l_2})G_{n,\sigma;l_1,l_2}(x). \]

We only consider the first term \(L_k'(\sigma,\theta;\chi_{l_1})L_k'(\sigma,\theta;\chi_{l_2})G_{n,\sigma}(x) \), since the
others can be treated similarly. If \(\theta \notin A_{j,\sigma}(\delta) \) for \(K \)-many \(j \), we will prove
\[
(2.1) \quad \int_{\mathbb{C}^j} e^{i \sum_j (L_k(\sigma,\theta;\chi_j)e^{x_j})y+x_1+x_2} G_{n,\sigma}(x) \, dx = O(|\delta y|^{-K}).
\]
For the other \(\theta \), we give a trivial upper bound by the measure of the set of those \(\theta \):
\[
\hat{\mu}_{n,\sigma}(y) \ll \left| \bigcap_{r_1<\cdots<r_K\leq j} (A_{r_1,\sigma}(\delta) \cup \cdots \cup A_{r_K,\sigma}(\delta)) \right| + |\delta y|^{-K},
\]
where the corresponding constant does not depend on \(n \) as \(y \to \infty \).

So, it is enough to prove (2.1). We decompose
\[
\int_{\mathbb{C}^j} e^{i \sum_j (L_k(\sigma,\theta;\chi_j)e^{x_j})y+x_1+x_2} G_{n,\sigma}(x) \, dx
\]
\[
= \sum_{m \in \mathbb{Z}^j} \int_{(\mathbb{R} \times [0,2\pi])^j} e^{i \sum_j r_je^{x_j} \cdot (L_k(\sigma,\theta;\chi_j)y)+x_1+x_2} G_{n,\sigma}(x+2\pi mi) \, dx.
\]
Changing variables \(e^{x_j} = r_je^{z_j} \) with Jacobian \(r_j^{-1} \) shows that the above equals
\[
\sum_{m \in \mathbb{Z}^j} \int_{[0,2\pi]^j} \int_{(0,\infty)^j} e^{i \sum_j r_je^{z_j} \cdot (L_k(\sigma,\theta;\chi_j)y)+z_1-z_2r_1r_2} \prod_j r_j^{-1} G_{n,\sigma}(\log r + i(z + 2\pi m)) \, dr \, dz,
\]
where \(r = (r_1,\ldots,r_J) \), \(z = (z_1,\ldots,z_J) \), and \(\log r = (\log r_1,\ldots,\log r_J) \).

Consider the integral
\[
\int_{0}^{2\pi} \int_{0}^{\infty} e^{ir_je^{z_j} \cdot (L_k(\sigma,\theta;\chi_j)y)+z_1-z_2r_1r_2} r_j^{-1} G_{n,\sigma}(\log r + i(z + 2\pi m)) \, dr \, dz
\]
\[
= \int_{0}^{2\pi} \int_{0}^{\infty} e^{ir_je^{z_j} |\cos(z_j-\alpha_j)|+z_1-z_2r_1r_2} r_j^{-1} G_{n,\sigma}(\log r + i(z + 2\pi m)) \, dr \, dz
\]
for some \(\alpha_j \). For \(\theta \notin A_{j,\sigma}(\delta) \), we integrate by parts with respect to \(z_j \) for \(|\cos(z_j-\alpha_j)| < 1/2 \), and with respect to \(r_j \) for \(|\cos(z_j-\alpha_j)| > 1/2 \). With the uniform upper bound \(K_q e^{-\lambda|x|^2} \) of partial derivatives of \(G \) of order \(\leq q \), we obtain (2.1). \(\blacksquare \)

Lemma 2.6. \(\hat{\mu}_{n,\sigma}(y) \) converges uniformly for every disc \(|y| \leq a \) and \(1/2 < \sigma_1 \leq \sigma \leq \sigma_2 \).

Proof. By definition, we have
\[
\hat{\mu}_{n+1,\sigma}(y) = \int_{[0,1]^n} \left| \frac{\partial}{\partial \sigma} E_{n+1,\sigma}(\Theta, u) \right|^2 du d\Theta.
\]
We get
\[\int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} \left| \frac{\partial}{\partial \sigma} E_{n+1,\sigma}(\Theta, u) \right|^2 du \]
\[= \int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} y \left| \frac{\partial}{\partial \sigma} E_{n,\sigma}(\Theta) \right|^2 du + \int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} y \times 2 \Re \left[\frac{\partial}{\partial \sigma} E_{n,\sigma}(\Theta) e^{2\pi i u} \right] \times \left| \frac{\partial}{\partial \sigma} \sum_{j=1}^J h_j(\ldots) \prod_{k<j \leq n} (\ldots)^{-1} \chi_j(p_{n+1}) \right| du \]
\[+ O\left(\frac{F_n(\sigma, \Theta)^2}{p_{n+1}^2} \right),\]
where
\[F_n(\sigma, \Theta) = \sum_{j=1}^J \prod_{k<l \leq n} \left| 1 - \frac{\chi_j(p_l)}{p_l^\sigma} e^{2\pi i \vartheta_l} \right|^{-1}.\]

As \(e^{ix} = 1 + ix + O(|x|^2)\) \((x \in \mathbb{R})\), we have
\[\int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} y du \]
\[= \int_0^1 e^{iE_{n,\sigma}(\Theta)} y (1 + i(E_{n+1,\sigma}(\Theta, u) - E_{n,\sigma}(\Theta)) \cdot y) du + O\left(\frac{F_n(\sigma, \Theta)^2}{p_{n+1}^2} \right)\]
\[= e^{iE_{n,\sigma}(\Theta)} y + O\left(\frac{F_n(\sigma, \Theta)^2}{p_{n+1}^2} \right).\]

Since \(e^{ix} = 1 + O(|x|)\) \((x \in \mathbb{R})\), we have
\[\int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} y \pm 2\pi i u du = \int_0^1 e^{iE_{n,\sigma}(\Theta)} y \pm 2\pi i u du + O\left(\frac{F_n(\sigma, \Theta)}{p_{n+1}^\sigma} \right)\]
\[= O\left(\frac{F_n(\sigma, \Theta)}{p_{n+1}^\sigma} \right).\]

Combining the above equalities yields
\[\int_0^1 e^{iE_{n+1,\sigma}(\Theta, u)} y \left| \frac{\partial}{\partial \sigma} E_{n+1,\sigma}(\Theta, u) \right|^2 du = e^{iE_{n,\sigma}(\Theta)} y \left| \frac{\partial}{\partial \sigma} E_{n,\sigma}(\Theta) \right|^2 \]
\[+ O\left(\frac{F_n(\sigma, \Theta)^2 + F_n(\sigma, \Theta)^3 + F_n(\sigma, \Theta)^4}{p_{n+1}^2 \log p_{n+1}} \right).\]

Thus, we have
\[\hat{\mu}_{n+1,\sigma}(y) - \hat{\mu}_{n,\sigma}(y) = O(p_{n+1}^{-2\sigma} \log p_{n+1})\]
and
\[\mu_{m,\sigma}(y) - \mu_{n,\sigma}(y) = O(p_n^{1-2\sigma}) \]
for \(m > n > k \). Hence, Lemma 2.6 follows. ■

3. Main results. We consider separately the cases \(J = 2 \) and \(J \geq 3 \). For \(J = 2 \), our function is the sum of two spoiled Euler products \(f_1(s) + f_2(s) \). We then apply the theory of value distribution for \(f_1(s) \) and \(f_2(s) \).

Proposition 3.1. Let \(J = 2 \) and \(1/2 < \sigma_1 < \sigma_2 \). Suppose that \(h_j(p_1^{-\sigma}e^{2\pi i \theta_1}, \ldots, p_k^{-\sigma}e^{2\pi i \theta_k}) \neq 0 \) for \(j = 1, 2 \), \(\sigma_1 \leq \sigma \leq \sigma_2 \), and \(\theta \in [0, 1]^k \). Then
\[N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(-1) d\sigma + o(T), \]
where \(H_\sigma(x) \) is the density of some distribution function \(\mu_\sigma \). Moreover, \(H_\sigma(x) > 0 \) for \(1/2 < \sigma \leq 1 \).

Proof. By Lemma 2.4, \(\varphi_{E_n}(\sigma) \) converges uniformly to \(\varphi_E(\sigma) \) on \([1/2, \infty)\). If \(\varphi_E(\sigma) \) is twice differentiable, then
\[N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} \int_{\sigma_1}^{\sigma_2} \varphi_E''(\sigma) d\sigma + o(T). \]
By direct calculation,
\[\varphi_{E_n}(\sigma) = \varphi_{h_2}(\sigma) + \varphi_{\tilde{L}_{n+1}}(\sigma), \]
where
\[\tilde{L}_{n}(s) = \frac{h_1}{h_2} (p_1^{-s}, \ldots, p_k^{-s}) \prod_{p_k < p \leq p_n} \frac{1 - \chi_2(p)/p^s}{1 - \chi_1(p)/p^s}. \]
By Lemma 2.1, we have \(\varphi_{h_2}''(\sigma) = 0 \) for \(\sigma_1 \leq \sigma \leq \sigma_2 \). For \(\tilde{L}_n \), the method in Chapter II of [3] works. Define
\[\tilde{L}_{n,\sigma}(\Theta) = \frac{h_1}{h_2} (p_1^{-\sigma}e^{2\pi i \theta_1}, \ldots, p_k^{-\sigma}e^{2\pi i \theta_k}) \prod_{k < l \leq n} \frac{1 - \chi_2(p_l)e^{2\pi i \theta_l}/p_l^\sigma}{1 - \chi_1(p_l)e^{2\pi i \theta_l}/p_l^\sigma}, \]
\[\mu_{n,\sigma}(B) = \int_{\tilde{L}_{n,\sigma}(\Theta)} \left| \frac{\partial}{\partial \sigma} \tilde{L}_{n,\sigma}(\Theta) \right|^2 d\Theta \]
for any Borel set \(B \subset \mathbb{C} \) and \(n > k \), \(\Theta = (\theta_1, \ldots, \theta_k, \theta_{k+1}, \ldots, \theta_n) \in [0, 1]^n \). Applying Theorems 5–10 in [3] with some modifications, we deduce that the absolutely continuous distributions \(\mu_{n,\sigma} \) converge to a distribution \(\mu_\sigma \) with a density \(H_\sigma(x) \) and \(\varphi_{\tilde{L}_{n+1}}''(\sigma) = 2\pi H_\sigma(-1) > 0 \) for \(1/2 < \sigma \leq 1 \).

For the case \(J \geq 3 \), we cannot do the same thing as for \(J = 2 \). However, by the method of [11], we obtain the following.
Proposition 3.2. Let \(J \geq 3 \) and \(1/2 < \sigma_1 < \sigma_2 \). Suppose that
\[
h_j(p_1^{-\sigma}e^{2\pi i \theta_1}, \ldots, p_k^{-\sigma}e^{2\pi i \theta_k}) \neq 0
\]
for \(j = l_1, l_2, l_3, \sigma_1 \leq \sigma \leq \sigma_2 \), and \(\theta \in [0, 1]^k \). Then
\[
N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T),
\]
where \(H_\sigma(x) \) is the density of some distribution function \(\mu_\sigma \).

Proof. By Lemma 2.4, \(\varphi_{E_n}^\sigma(\sigma) \) converges uniformly to \(\varphi_E(\sigma) \) on \([1/2, \infty)\). If \(\varphi_E(\sigma) \) is twice differentiable, then
\[
N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} \int_{\sigma_1}^{\sigma_2} \varphi_E''(\sigma) \, d\sigma + o(T).
\]
By Lemma 2.5 with
\[
\delta = \min\{|h_j(p_1^{-\sigma}e^{2\pi i \theta_1}, \ldots, p_k^{-\sigma}e^{2\pi i \theta_k})| \mid j = l_1, l_2, l_3, \sigma_1 \leq \sigma \leq \sigma_2, \theta \in [0, 1]^k\} > 0,
\]
we have \(\hat{\mu}_{n,\sigma}(y) \ll |y|^{-3} \) and this implies that \(\mu_{n,\sigma} \) is absolutely continuous and its density \(H_{n,\sigma}(x) \) is continuous. Let \(\nu_{n,\sigma} \) be the asymptotic distribution of \(E_n(\sigma + it) \) with respect to \(|E_n(\sigma + it)|^2 \). Since \(\hat{\mu}_{n,\sigma}(y) = \hat{\nu}_{n,\sigma}(y) \) by Kronecker’s theorem, \(\mu_{n,\sigma} = \nu_{n,\sigma} \) and \(H_{n,\sigma} \) is their common density. By Lemma 2.3, \(\varphi_{E_n-x}''(\sigma) = 2\pi H_{n,\sigma}(x) \). By Lemma 2.6, \(H_{n,\sigma}(x) \) converges to \(H_\sigma(x) \) which is the density of some distribution \(\mu_\sigma = \lim_{n \to \infty} \mu_{n,\sigma} \). Therefore,
\[
N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T). \quad \blacksquare
\]

By Lemma 2.2, each Dirichlet polynomial \(h_j(p_1^{-s}, \ldots, p_k^{-s}) \) has at most a finite number of linearity intervals of its Jensen function \(\varphi_{h_j}(\sigma) \) in \([1/2, \infty)\). Let \(\mathcal{J}_j \) be the union of those intervals. By Lemmas 2.3 and 2.4 and almost periodicity, \(h_j \) has no zero in \(\mathcal{J}_j \). We let \(\zeta_j = \inf \mathcal{J}_j \geq 1/2 \), and \(\zeta_E \) be the third smallest \(\zeta_j \), more precisely, \(\zeta_E = \zeta_3 \) when \(\zeta_{l_1} \leq \zeta_{l_2} \leq \zeta_{l_3} \leq \cdots \) is the linear order of \(\zeta_1, \ldots, \zeta_J \). By combining Lemma 2.4 and Proposition 3.2, we obtain the following theorem.

Theorem 3.3. Let \(J \geq 3 \) and \(\zeta_E < \sigma_1 < \sigma_2 \). Suppose that \(\sigma_1, \sigma_2 \in \mathcal{J}_j \) for at least three \(j \). Then
\[
N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} (\varphi_E'(\sigma_2) - \varphi_E'(\sigma_1)) + o(T).
\]
Suppose further that \([\sigma_1, \sigma_2] \subset \mathcal{J}_j \) for at least three \(j \). Then
\[
N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) \, d\sigma + o(T),
\]
where $H_\sigma(x)$ is the density of some distribution μ_σ. In this case, for $\sigma_1 < \sigma_0 < \sigma_2$, the number of zeros of $E(s)$ on the line segment $\Re s = \sigma_0$, $0 < \Im s < T$ is $\mathcal{O}(T)$.

If each \tilde{h}_j is non-vanishing on $\Re s > 1/2$, the conclusion of Theorem 3.3 holds.

Theorem 3.4. Let $J \geq 3$ and $1/2 < \sigma_1 < \sigma_2$. Suppose that $\tilde{h}_j \neq 0$ for $\Re s > 1/2$. Then

\[
N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) d\sigma + \mathcal{O}(T),
\]

where $H_\sigma(x)$ is the density of a distribution μ_σ. For $\sigma_0 > 1/2$, the number of zeros of $E(s)$ on the line segment $\Re s = \sigma_0$ and $0 < \Im s < T$ is $\mathcal{O}(T)$.

As a consequence, we obtain Theorem 1.1.

We now consider the case when \tilde{h}_j is a one-variable polynomial. Then it has only finitely many solutions, say $\beta_1, \ldots, \beta_m \in \mathbb{C}$. So $\tilde{h}_j(p^{-s}) = 0$ if and only if $p^{-s} = \beta_i$ for some i. Thus, each line segment $\Re s = -\log |\beta_j|/\log p$, $0 < \Im s < T$ contains $cT + O(1)$ zeros of $\tilde{h}_j(p^{-s})$. So we may not have the equation (3.1) for $E(s)$. However, if we disregard these exceptional points, we obtain the following theorem.

Theorem 3.5. Let $J \geq 3$ and $1/2 < \sigma_1 < \sigma_2$. Let

\[
E(s) = \sum_{j \leq J} \tilde{h}_j(p_1^{-s}, \ldots, p_k^{-s})L(s, \chi_j),
\]

where each \tilde{h}_j is a polynomial of one variable. Then

\[
N_E(\sigma_1, \sigma_2; 0, T) = \frac{T}{2\pi} (\varphi'_E(\sigma_2) - \varphi'_E(\sigma_1)) + \mathcal{O}(T).
\]

Suppose $\mathcal{I} = \bigcup_{l_1 < l_2 < l_3 \leq J} (I_{l_1} \cap I_{l_2} \cap I_{l_3})$ is $(1/2, \infty)$ minus finitely many points. If $[\sigma_1, \sigma_2] \subset \mathcal{I}$, then

\[
N_E(\sigma_1, \sigma_2; 0, T) = T \int_{\sigma_1}^{\sigma_2} H_\sigma(0) d\sigma + \mathcal{O}(T),
\]

where $H_\sigma(x)$ is the density of some distribution μ_σ. For $\sigma_0 \in \mathcal{I}$, the number of zeros of $E(s)$ on the line segment $\Re s = \sigma_0$, $0 < \Im s < T$ is $\mathcal{O}(T)$.

As a consequence, we obtain Theorem 1.2.

Acknowledgments. The research of the first author is supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2008-313-C00009). This work was completed while the second author was a postdoc at POSTECH.
He would like to thank the faculty members of POSTECH for their hospitality. Finally, the authors would like to thank the referee for some helpful comments.

References

Haseo Ki
Department of Mathematics
Yonsei University
Seoul, 120-749, Korea
and
Korea Institute for Advanced Study
207-43 Cheongnyangni-dong
Dongdaemun-gu
Seoul 130-722, Korea
E-mail: ki.haseo97@gmail.com
haseo@yonsei.ac.kr

Yoonbok Lee
Department of Mathematics
POSTECH
Pohang, Gyungbuk 790-784, Korea
Current address:
Korea Institute for Advanced Study
207-43 Cheongnyangni-dong
Dongdaemun-gu
Seoul 130-722, Korea
E-mail: leeyb131@gmail.com
leeyb@kias.re.kr

Received on 18.3.2010
and in revised form on 4.10.2010 (6337)