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Abstract

We investigate the optimal treatment strategies with an age-structured model of HIV infec-
tion. The age-structured model allows for variations in the virion production rate and the death
rate of infected T cells as a function of age, which is the length of time since infection. We
derive the optimal therapy protocols by formulating and analyzing an optimal control problem
and establish the existence of solutions to the optimal control problem. The optimal treatment
strategy is obtained by solving the corresponding optimality system numerically. We demon-
strate by numerical simulations that the dynamic treatment strategy delays the time to reach
the peak viral load and reduces the viral load. Moreover, we propose that optimal therapy
protocols should be changed according to different viral production rates and death rates of
infected T cells.
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1 Introduction

Human immunodeficiency virus (HIV) causes acquired immune deficiency syndrome (AIDS). The
virus is characterized by a severe impairment of the immune system and related opportunistic
infections. The main target cell of HIV is the CD4+ T helper cell. Recent years have seen the
arrival of new drugs that substantially decrease morbidity and mortality in HIV-infected patients.
Despite this progress, there is still no treatment protocol that can results in clearance the HIV from
patients. In addition, many complications can arise from long-term drug use. For example, drug-
resistant strains of HIV can appear, resulting in the resurgence of viral loads after their long-term
suppression from treatment [17, 21]. There may also be a number of harmful side effects from such
drug use. Moreover, high drug costs and complicated drug regimens make effective Highly Active
Anti-Retroviral Therapy (HAART) use burdensome for some patients and impossible for others.

Consequently, a number of researchers have searched for optimal treatment strategies that
can decrease virus mutations, pharmaceutical side effects, and complex and expensive medication
burdens. The optimal control problems of HIV infection have been examined by using different
types of models and objective functionals [1, 2, 9, 14]. These authors suggested the continuous
optimal treatment schedules that can be found by solving the corresponding optimality systems.
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B.M. Adams et al. considered two different kind of treatment as control functions. One prevents
HIV from infecting cells by blocking the integration of the HIV viral code into the host cell genome
and the other prevents infected cells from replication of infectious virus particles [1, 2]. L.M. Wein,
et al. used a control theoretic approach for multi-drug therapies with models allowing mutations
[27]. An approximating method was employed because of the high dimensionality of the control
problem. The feedback control problems have been explored [3, 5, 7, 23]. In [7], several methods
of the stable control of the HIV population were considered by using an external feedback control
term that was analogous to the introduction of a therapeutic drug regimen. The optimal feedback
control problems and the state estimator problems based on the state dependent Riccati equation
(SDRE) approach for HIV infection were considered in [5].

More recently, substantial progress has been made in the on-off type of treatment. This treat-
ment is also known as structured treatment interruption (STI). STI has received considerable
attention because it may reduce the risk of HIV mutating to strains resistant to current medication
regimens. The STI approach may also reduce the possible long-term toxicity of drugs [1, 2, 6, 15, 28].
A concise summary of clinical STI studies, including protocols and results, is presented in [4]. Some
researchers have used a fixed length, prescribed interruption schedule, whereas others have used
viral loads and T-cell measurements from patients to determine the interruption period [15, 22].
There is currently no general agreement on which treatment strategies or interruption schemes are
optimal. One way to consider the optimal STI is to use a mathematical model for HIV infection in
conjunction with control theory. The authors in [1, 2] introduced a method called the direct search
approach; this method uses ideas from dynamic programming, to obtain an optimal on-off type of
treatment.

To date, many mathematical models have been developed to describe the interaction of CD4+
T cells and HIV in the immune system [8, 16, 19, 24]. Some models of HIV infection have used
optimal control theory, generally focusing on the system of ordinary differential equations. However,
to our knowledge, optimal control theory based on age-structured models has not been considered
in the identification of an optimal methodology for administering HIV treatment. The proposed
age-structured model in [18] allows for variations in the death rate of infected CD4+ T cells and
the production rate of viral particles. We use this model as constraint equations in the optimal
control problem.

The rest of this paper proceeds as follows. Section 2 describes the age-structured HIV model
suggested by P.W. Nelson et al. [18]. Section 3 present the formulation of the optimal control
problem and the corresponding optimality system. We provide a proof of the existence of an
optimal control function. We then derive an optimality system that characterizes the optimal
control. Section 4 presents the numerical results of the continuous optimal therapy by solving the
optimality system. We give concluding remarks in Section 5.

2 Age-structured Model

We now introduce an age-structured model of HIV infection. The model has three state variables:
T (t), uninfected CD4+ T cells; T ∗(a, t), infected CD4+ T cells structured by the age, a, of their
infection; and V (t), the virus particles. The system of two ordinary differential equations and one
first order hyperbolic equation describing the HIV dynamics is given by
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dT

dt
= s − dT (t) − (1 − ǫ(t))kV (t)T (t),

∂T ∗

∂t
+

∂T ∗

∂a

da

dt
= −δ(a)T ∗(a, t),

dV

dt
=

∫ ∞

0
P (a)T ∗(a, t)da − cV (t).

(2.1)

In this model, we assume that uninfected T cells are produced at a constant rate, s and die at
a rate, d, per cell. The term kV T represents the infection process wherein infected cells, T ∗, are
produced by encounters between uninfected target cells, T , and virus particles, V , with an infection
rate constant k. The death rate, δ(a), and the virion production rate, P (a), of T ∗ are assumed to
be the functions of the age of cellular infection, a and virions, V , are assumed to be cleared at a
constant rate, c. We also assume da

dt
= 1; that is, that the time unit for the age of infection is the

same as that for clock time. As a first order hyperbolic equation is contained in the model, the
boundary and initial conditions should be introduced.

The infected CD4+ T cells of age zero are created by infection; that is,

T ∗(0, t) = (1 − ǫ(t))kV (t)T (t).

We may also impose specific initial conditions for T (0) = T0, T ∗(a, 0) = T ∗
0 (a) and V (0) = V0. The

control term ǫ(t) represents the effectiveness of the reverse transcriptase inhibitors(RTI) that block
new infection. Thus the infection rate, k, is reduced to (1−ǫ(t))k, where 0 ≤ ǫmin ≤ ǫ(t) ≤ ǫmax < 1.
Here ǫmin and ǫmax represent minimal and maximal drug efficacy, respectively.

Remark 2.1. With the above boundary and initial conditions and a smooth enough control function,
we note that there exists a unique solution to the system (2.1) which remains bounded and non-
negative for t > 0 (see [18, 26]).

The mathematical model (2.1) contains several constant parameters and function parameters
that must be assigned for numerical simulations. The descriptions and numerical values for the
parameters are summarized in Table 1, which are principally extracted from the paper authored
by P.W. Nelson et al. [18].

It is reasonable to expect a ≤ amax so that the integral in (2.1) is not necessarily an infinite
integral. The viral production kernel, P (a), has a maximum production rate, Pmax, because cellular
resources ultimately limit how rapidly virions can be produced. The total number, N , of viral
particles produced over the lifespan of an infected cell is called the burst size. We have

N =

∫ ∞

0
P (a)σ(a)da,

where
σ(a) = e−

∫ a

0
δ(s)ds (2.2)

is the probability that an infected cell survives to age a.
In the absence of drug treatment, the model (2.1) has two steady state. One steady state is the

trivial or noninfected steady state

(T̄ , T̄ ∗(a), V̄ ) = (
s

d
, 0, 0). (2.3)
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Table 1: The values of the parameters in the HIV model.
parameter value description

s 0.13 (cells/µl · day) production(source) rate of CD4+T cells

d 0.013 (1/day) death rate of CD4+T cells

k 0.46 × 10−6 (ml/virion · day) infection rate of wild-type virus

δ(a) · infected cell death rate

P (a) · virion production kernel

c 3 (1/day) virus natural death rate

The other is a non-trivial or infected steady state

T̄ =
c

kN

T̄ ∗(a) = (s −
dc

kN
)σ(a)

V̄ =
s

c
N −

d

k
.

(2.4)

For a more detailed description of the model and the steady states we refer the reader to [18].

3 An Optimal Control Problem

In this section, we formulate an optimal control problem together with the age-structured model
(2.1) to derive the optimal treatment strategies. We minimize not only the virus population but
also the systemic costs of drug treatments. The costs of these treatments come from both the
actual treatment cost and the severity of unintended side effects of drugs. The objective functional
to achieve this goal is defined as

J(ǫ) =

∫ tf

0
[RV (t) + Qǫ(t)2]dt, (3.1)

where Q and R are the weight constants to balance the quantities of virus and the control function,
respectively. Our control function, ǫ(t), represents the drug (RTI) effectiveness satisfying 0 ≤
ǫmin ≤ ǫ(t) ≤ ǫmax < 1. The control class is chosen to be the measurable functions defined on
[0, tf ], with the condition 0 ≤ ǫmin ≤ ǫ(t) ≤ ǫmax < 1,

Problem 3.1. We seek an optimal control ǫ∗ such that

J(ǫ∗) = min{J(ǫ) | ǫ is Lebesque-integrable on [0, tf ] with values in U = [ǫmin, ǫmax] }

subject to a system of a partial differential equation and ordinary differential equations (2.1) with
boundary condition T ∗(0, t) = (1−ǫ(t))kV (t)T (t) and initial conditions T (0) = T0, T ∗(a, 0) = T ∗

0 (a)
and V (0) = V0.

The basic framework of an optimal control problem is to prove the existence of an optimal
control and then characterizes the optimal control by using the optimality system.
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3.1 Existence of an optimal control

We now prove that there exists an optimal control that minimizes the objective functional (3.1)
subject to the age-structured model. The existence of an optimal control can be obtained by using
a result from Fleming and Rishel [10].

Theorem 3.2. There exists an optimal control ǫ∗ to Problem 3.1.

Proof. To use the existence result in [10], we recast the system (2.1). First, note that the solution
formula for T ∗(a, t) can be obtained by using characteristic lines as

T ∗(a, t) =

{

B(t − a)σ(a) if t ≥ a ,

T ∗
0 (a − t) σ(a)

σ(a−t) if t < a .
(3.2)

where T ∗
0 (a) is the initial value, B(t) = (1 − ǫ(t))kV (t)T (t) is the boundary value of T ∗(a, t) and

σ(a) is given by (2.2) [26].
Substituting (3.2) into (2.1), the system (2.1) can be rewritten as

dT

dt
= s − dT (t) − (1 − ǫ(t))kV (t)T (t)

dV

dt
=

∫ t

0
P (a)σ(a)

(

1 − ǫ(t − a)
)

kV (t − a)T (t − a)da

+

∫ ∞

t

P (a)
σ(a)

σ(a − t)
T ∗

0 (a − t)da − cV (t)

(3.3)

Since we assume here that P (a) ≤ Pmax ≤ ∞, we have

lim
t→∞

∫ ∞

t

P (a)
σ(a)

σ(a − t)
T ∗

0 (a − t)da = 0.

We refer to the conditions in Theorem III. 4.1 and Corollary III. 4.1 in Fleming and Rishel
[10]. We now list the requirements from the theorem as follows and verify the nontrivial ones. Let
f(t, ~x, ǫ) be the right hand side of (3.3) with ~x = [T, V ]T .

1. f is of class C1 and there exists a constant C such that

|f(t, 0, 0)| ≤ C, |f~x(t, ~x, ǫ)| ≤ C(1 + |ǫ|), |fǫ(t, ~x, ǫ)| ≤ C.

2. The admissible set F of all (T0, V0, ǫ) such that ǫ is Lebesque-integrable on the interval [0, tf ]
with values in U and the solution of (3.3) satisfies the initial conditions is non-empty.

3. For 0 ≤ α ≤ 1,

f
(

t, ~x, [(1 − α)ǫ + αǫ]
)

= (1 − α)f(t, ~x, ǫ) + αf(t, ~x, ǫ).

4. The control set U is closed, convex and compact.

5. The integrand of the objective functional (3.1) is convex on U and bounded below by c1|ǫ|
κ−c2

for some c1 > 0 and κ > 1.
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It is clear that f(t, ~x, ǫ) is of class C1. Moreover, we have

|f(t, 0, 0)| =

∣

∣

∣

∣

∣

∣

∣







s
∫ ∞

t

P (a)
σ(a)

σ(a − t)
T ∗

0 (a − t)da







∣

∣

∣

∣

∣

∣

∣

|f~x(t, ~x, ǫ)| ≤

∣

∣

∣

∣

∣

∣

∣







−d − kV −kT
∫ t

0
P (a)σ(a)kV (t − a)da

∫ t

0
P (a)σ(a)kT (t − a)da − c







∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣







kV kT

−

∫ t

0
P (a)σ(a)kV (t − a)da −

∫ t

0
P (a)σ(a)kT (t − a)da







∣

∣

∣

∣

∣

∣

∣

|ǫ|

|fǫ(t, ~x, ǫ)| =

∣

∣

∣

∣

∣

∣

∣







kV T

−

∫ t

0
P (a)σ(a)kV (t − a)T (t − a)da







∣

∣

∣

∣

∣

∣

∣

Since P, σ, V and T are bounded, there exists a constant C such that

|f(t, 0, 0)| ≤ C, |f~x(t, ~x, ǫ)| ≤ C(1 + |ǫ|), |fǫ(t, ~x, ǫ)| ≤ C.

Because of Remark 2.1, there exists a unique solution for (2.1) for a constant control, which
implies Condition 2. The requirement of f being a linear function of ǫ can be replaced by Condition 3
without affecting any argument in the theorem. Conditions 4 and 5 are obvious from the definition.

3.2 The optimality system

To compute the optimal control function to Problem 3.1, we derive an optimality system based on
the discretize-then-differentiate approach. We first discretize the age classes of T ∗ into an array of
age classes between 0 and amax to convert the age-structured model (2.1) into a series of coupled
ordinary differential equations. We then differentiate the series of coupled ordinary differential
equations to obtain an adjoint(costate) system. See [11] for more information and the advantages
of the approach. The integral in the age-structured model can be approximated with a summation.
Let {aj}

n
j=0 be a partition of [0, amax] with a0 = 0, aj−1 ≤ aj, △aj = aj − aj−1(j = 1, 2, · · · n) and

an = amax. For each j = 1, 2, · · · , n, the discrete equations of the original constraint equations are
given by
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dT

dt
= s − dT (t) − (1 − ǫ(t))kV (t)T (t) ,

dT ∗

dt
(aj , t) = −

T ∗(aj , t) − T ∗(aj−1, t)

∆aj
− δ(aj)T

∗(aj , t) ,

dV

dt
=

n
∑

j=1

P (aj)T
∗(aj , t)∆aj − cV (t)

T ∗(a0, t) = k(1 − ǫ(t))V (t)T (t) and T ∗(aj, 0) = T ∗
0 (aj) ,

(3.4)

provided da
dt

= 1. Using the notations T ∗
j = T ∗(aj , t) and X = [T, T ∗

1 , T ∗
2 , · · · , T ∗

n , V ]T , we have the
discrete constraint equations as follows:

Ẋ =































T

T ∗
1

T ∗
2

· · ·

T ∗
n

V































′

=











































s − dT − (1 − ǫ)kV T

−
T ∗

1 − k(1 − ǫ)V T

∆a1
− δ(a1)T

∗
1

−
T ∗

2 − T ∗
1

∆a2
− δ(a2)T

∗
2

· · ·

−
T ∗

n − T ∗
n−1

∆an
− δ(an)T ∗

n

n
∑

j=1

P (aj)T
∗
j ∆aj − cV











































(3.5)

with the initial condition X(0) = [T (0), T ∗
0 (a1), T

∗
0 (a2), · · · , T ∗

0 (an), V (0)]T .
We now characterize the optimal control function by using Pontryagin’s Maximum Principle

[10, 13, 20]. For this, we first define our Hamiltonian which is the integrand of the objective
functional, coupled with the right hand sides of the discrete constraint equations (3.5) through the
adjoint variables Y = [ξ, λ1, λ2, · · · , λn, η]T . Since the control is bounded, we form the Lagrangian
(L) that consists of the Hamiltonian and a penalty multiplier as follows:

L =
[

RV (t) + Qǫ2(t)
]

+ ξ [s − dT − (1 − ǫ)kV T ] + λ1

[

−
T ∗

1

∆a1
+

(1 − ǫ)kV T

∆a1
− δ(a1)T

∗
1

]

+
n

∑

j=2

λj

[

−
T ∗

j − T ∗
j−1

∆aj
− δ(aj)T

∗
j

]

+ η





n
∑

j=1

P (aj)T
∗
j ∆aj − cV



 − w1(ǫ − ǫmin) − w2(ǫmax − ǫ) .

where wi(t) ≥ 0, (i = 1, 2) is the penalty multiplier satisfying

w1(t)(ǫ − ǫmin) = w2(t)(ǫmax − ǫ) = 0 at ǫ = ǫ∗.

Here ǫ∗ is the optimal control.
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Theorem 3.3. Given an optimal control ǫ∗ and solutions to the corresponding discrete constraint
equations (3.5) that minimize the objective functional (3.1), there exist adjoint variable Y =
[ξ, λ1, λ2, · · · , λn, η]T satisfying

Ẏ =

















ξ
λ1

λ2

· · ·
λn

η

















′

= −











































−dξ − (1 − ǫ)kV ξ +
(1 − ǫ)k

∆a1
V λ1

−
λ1

∆a1
− δ(a1)λ1 +

λ2

∆a2
+ P (a1)∆a1η

−
λ2

∆a2
− δ(a2)λ2 +

λ3

∆a3
+ P (a2)∆a2η

...

−
λn

∆an
− δ(an)λn + P (an)∆anη

R − (1 − ǫ)kTξ +
(1 − ǫ)k

∆a1
Tλ1 − cη











































(3.6)

with the terminal condition Y (tf ) = [0, 0, · · · , 0]T . Moreover, the optimal control function ǫ∗ is
given by

ǫ∗ = max
(

ǫmin,min
(

ǫmax,
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ

]

))

. (3.7)

Proof. The results follow from an application of a version of Pontryagin’s Maximum Principal [13].
Using the Lagrangian expression (3.2), we can obtain the adjoint differential equations (3.6) by

Ẏ = −
∂L

∂X

where Y (tf ) = [0, 0, · · · , 0]T is the transversality conditions. To obtain the expression of the optimal
control ǫ∗, we explore the necessary optimality condition ∂L

∂ǫ
= 0, that is,

∂L

∂ǫ
= 2Qǫ + kV Tξ −

k

∆a1
V Tλ1 − w1 + w2 = 0.

Solving for the optimal control we obtain

ǫ∗ =
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ + w1 − w2

]

.

To determine an explicit expression for the optimal control without w1 and w2, we shall consider
all possible values for the control, including the boundary values.

1. In the set {t| ǫmin < ǫ∗(t) < ǫmax}, we have w1(t) = w2(t) = 0 and hence

ǫ∗ =
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ

]

.
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2. In the set {t| ǫ∗(t) = ǫmax}, we have w1(t) = 0. Thus the optimal control is characterized as:

ǫmax = ǫ∗ =
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ − w2

]

.

Since w2 ≥ 0,
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ

]

≥ ǫmax

3. In the set {t| ǫ∗(t) = ǫmin}, we have w2(t) = 0. Thus we have

ǫmin = ǫ∗ =
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ + w1

]

.

This implies that
1

2Q

[

k

∆a1
V Tλ1 − kV Tξ

]

≤ ǫmin since w1 ≥ 0.

Combining these three cases together, we obtain the desired representation of ǫ∗ (3.7).

The optimality system consists of the state system (3.5) with initial conditions, the adjoint
system (3.6) with terminal conditions and the optimality condition (3.7).

4 Numerical simulations

The optimality system was solved numerically to compare optimal treatment with various param-
eters. In the optimality system, the initial conditions were specified for the state equations (3.5),
whereas the terminal conditions were specified for the adjoint equations (3.6). We used a gradient
type iterative method to solve this two-point boundary value problem.

1. choose an initial guess of control.

2. solve the state system forward in time by using the initial guess of control.

3. solve the adjoint system backward in time.

4. update the control in each iteration by using the optimality condition.

5. continue the iterations until convergence is achieved.

For more information on such an iterative method, see the reference [11]. The optimal treatment
strategy for 200 days was found by solving the optimality system through the use of this iterative
scheme. In the numerical runs, we compared optimal treatment strategies by varying the viral
production function, the death rate of infected cells and the initial values.
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4.1 Functional form of the viral production kernel and the infected-cell death

rate

A class of cells has a certain age that corresponds to age-dependent viral production and infected-
cell death rates. To represent these rates, we need explicit functional forms of the viral production
kernel, P (a) and the death rate of the infected cells, δ(a). However, such forms are unknown; thus,
we have to depend on experimental data to induce the dynamics of viral production and infected-
cell death rates. According to prior researches [12, 18], we may consider one functional form of
the possible kernels that capture the features of the biology, where a maximum production rate,
Pmax is provided because cellular resources ultimately limit how rapidly virions can be produced.
A delayed or nondelayed exponential function can be defined as follows:

P (a) =

{

Pmax(1 − exp−β(a−d1)) if a ≥ d1

0 otherwise
(4.8)

where β controls how rapidly the saturation level, Pmax, is reached. The term d1 represent the
delay in viral production; that is, it takes time d1 after initial infection for the first viral particles
to be produced (see Figure 1).

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500
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700
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900

1000

1100
Viral production kernel, P(a)

β=0.1

β=10

β=1

Figure 1: Virion production kernel, P (a) where Pmax = 980 virions/day in (4.8). Solid lines are no
delay cases (d1=0) and solid-dash lines are delay cases (d1=1).

For the same reason given in the case of the viral production kernel, we represent the death rate
of infected cells as a function of age. We assume that infected T cell death rates increase with the
age of the cells. In addition, a minimal infection time is needed before epitopes are expressed, the
cells become susceptible to cell-mediated killing, or for enough viral products are made such that
the cells die from the infection itself. In [18], the death rate of infected cells is defined by

δ(a) =

{

δ0 a < d2,

δ0 + δm(1 − exp−γ(a−d2)) a ≥ d2,
(4.9)
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where δ0 + δm is the maximal death rate, γ controls the time to saturation and d2 is the delay
between infection and the onset of cell-mediated killings. The term δ0 represents the background
death rate and δ(a) explains the exponential loss of infected cells with the age of the cells in Figure
2. In the numerical simulations we used δ0 = 0.05 and δm = 1.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
the death rate, δ(a)

δ
0
+δ

m

δ
0

γ=1

γ=0.1
γ=0.5

Figure 2: Death rate of infected T cells with δ(a) given by (4.9) where δ0 = 0.05 day−1 and δm = 1.
Solid lines are no delay cases (d2=0) and solid-dash lines are delay cases (d2=1).

4.2 Optimal control of primary infection

We simulated the optimal control problem by employing the dynamics of viral production rates
and death rates depending on the age of infected cells. In particular, we discretized the age classes
of T ∗ into an array of equally sized age classes between 0 and amax. Here amax does not necessarily
correspond to the maximum age of infection of a cell; instead, it may corresponds to the age at
which the production rate closely approaches the asymptotic value Pmax. Thus amax is essentially
constant with age. See [18] for more information.

Drug efficacies were bounded by ǫmin = 0 and ǫmax = 0.8. Since the magnitudes of the virus
population and drug treatment functions in the objective functional (3.1) were on different scales,
we balanced them by choosing weight values R = 0.1 and Q = 103. In addition, we chose amax = 10
and n = 100 such that △aj = 0.1 (j = 1, 2, · · · , n).

We first stimulated early infection by perturbing the noninfected unstable steady state with
the introduction of a small amount of virus particles and very low levels of infected T cells. We
took the initial conditions T (0) = 10/µl, V (0) = 0.02/ml, and T ∗

j (0) = 10−3 for j = 1, · · · , n
[18]. The optimal control function and the optimal solutions with β = 1, d1 = 0, Pmax = 980, γ =
0.5, δ0 = 0.05, δm = 1, and d2 = 0 in P (a) and δ(a) are shown in Figure 3. We also present
the solutions with no treatment (i.e., ǫ = 0) for comparison purposes. In the first graph, we see
the recommendations for the treatment schedule of reverse transcriptase inhibitors(RTI) during a
given period of time. The second graph depicts the dynamics of uninfected T cells with and without
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treatment. The total population of uninfected T cells corresponding to the optimal control was
much higher than the one without treatment over the period. In addition, the use of the optimal
therapy protocol increased the number of uninfected T cells as time progressed. By contrast, in
the no treatment case, a certain level of uninfected T cells was maintained. As expected, a peak
time delay and a reduction in viral load were observed.

4.3 Varying the viral production kernel and the infected-cell death rate

We investigated the effects of the dynamics of viral production rates and death rates as a function
of the age of infected cells by performing numerical simulations with different parameter sets.

Data 1 : Varying P (a) by using β = 10, 1, 0.1 without a delay (d1 = 0)

Data 2 : Varying P (a) by using β = 10, 1, 0.1 with a delay (d1 = 1)

Data 3 : Varying δ(a) by using γ = 1, 0.5, 0.1 without a delay (d2 = 0)

Data 4 : Varying δ(a) by using γ = 1, 0.5, 0.1 with a delay (d2 = 1)

In Data 1 and 2, fixing the death rate by using δ0 = 0.05, δm = 1, γ = 1, and d2 = 0, we varied
the rate of virion production with and without a delay. The treatment strategies suggested by both
runs are illustrated in Figure 4. The graphs in the first column are the results of simulations using
various β and no delay. As the age-related virion production rate decreased, there was a decrease
in the size of viral loads. As shown in the graphs, the amount of drug treatment also decreased.
The second column shows the optimal control when there was a delay between initial infection and
viral production. The shape and peak of the optimal control changed depending on the size of viral
loads as the delay in viral production was introduced. Note that the amount of drug treatment
was reduced as β decreased, consistent with the argument used in the case of no delay.

To understand the impact of viral death rates, a fixed rate of virion production with Pmax = 980,
d1 = 0, and β = 0.1 and various γ were used in Data 3 and 4. As detailed below and illustrated
in Figure 5, the recommendations suggested by these runs were consistent with those of previous
simulations varying β. The decrease in γ implied decrease in the death rates of productively
infected T cells. It raised both infected cells and viral loads and thus required additional treatment
efforts. The changes resulting from delays can be explained by using the same argument used for
the numerical results of Data 2.

4.4 Sensitivity of optimal control to initial values

In general, the model sensitivity to initial conditions is one of the important issues in primary
infection. There is no way to measure the exact amount of virus and the density of target cells at
the beginning of infection. In addition, the exact infection time is unknown [18, 25]. Therefore,
it is worth exploring how treatment strategies change in response to different initial conditions,
which affect the time to reach the peak viral load. We considered three different initial conditions
T (0) = 1/µl, T (0) = 10/µl, and T (0) = 100/µl to observe the changes in optimal control functions.
The optimal solutions and the untreated solutions were compared to depict the relation between
the dynamics of the treatment schedule and the time to reach the peak viral load.

Larger sets of initial data on infected T cells led to higher and earlier peak viral loads. This
explains the shift of drug treatment toward an earlier stage as shown in Figure 6. Noteworthy is
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that drug treatment should be started just before the first peak viral load and that higher doses at
late stages are beneficial for the effective control of viral loads in HIV patients.

5 Conclusions

This paper examined optimal control theory with an age-structured model to design treatment
strategies for the HIV infection. The age-structured model allows for variations in the virion
production rate and the death rate of infected T cells as a function of age. We included in the model
a control function that represents the efficacy of reverse transcriptase inhibitors(RTIs). We proved
the existence of optimal solutions and derived an optimality system based on the discretize-then-
differentiate approach. The optimal therapy protocol was obtained by solving a large optimality
system of equations with opposite orientations. The optimal treatment strategy maintained the
virus load at a very low level and delayed the time to reach the peak viral load. The numerical results
indicated that therapy protocols should be changed according to different viral production kernels
and infected cell death rate. Moreover, we observed that the initiation of drug administration
should depend on the initial values of infected CD4 T cells.
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Figure 3: Plots show the optimal control function, optimal solutions (solid line), and untreated
solutions (dashed line). We chose β = 1, d1 = 0, Pmax = 980, γ = 0.5, δ0 = 0.05, δm = 1, and
d2 = 0 in P (a) and δ(a).
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Figure 4: Optimal control functions with various virion production rate P (a). The graphs in the
left column are the results of the no-delay case (d1 = 0); those in the right column, the delay case
(d1 = 1) using δ0 = 0.05, δm = 1, γ = 1, and d2 = 0.
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Figure 5: Optimal control functions with various death rate of infected cells δ(a). The graphs in
the left column are the results of the no-delay case (d2 = 0); those in the right column, the delay
case (d2 = 1) using Pmax = 980, d1 = 0, and β = 0.1.
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Figure 6: Optimal controls and corresponding solutions with various initial data, T (0)(1/µl). The
graphs in the left column are the results of the optimal control function, ǫ; those in the right
column, uninfected CD4+ T cells T (t) and virus particles V (t). The optimal solutions (solid line)
were compared with the untreated solutions (dashed line). For this figure, we used β = 1, d1 = 0,
Pmax = 980, γ = 0.5, δ0 = 0.05, δm = 1, and d2 = 0 in P (a) and δ(a).
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