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Abstract
A new method for producing frequency-difference images in electrical
impedance tomography (EIT) has been recently suggested. It employed
the use of a weighted voltage difference between two frequencies. In
this paper, we �rst explain why the weighted difference is advantageous
for some applications of the frequency-difference EIT (fdEIT). Based on a
relationship between injection currents at two frequencies and a weighted
difference of two corresponding complex voltages, we establish an fdEIT
image reconstruction algorithm. In order to apply the algorithm to a practical
setting, we propose the concept of an equivalent homogeneous admittivity
whose value can be estimated by measuring induced voltages at the third
frequency. To test this new fdEIT algorithm, we performed numerical
simulations and imaging experiments using two-dimensional phantoms with
frequency-dependent admittivity distributions. From reconstructed real- and
imaginary-part fdEIT images, we could validate its advantage in terms of
visualizing anomalies with fewer amounts of artifacts. We propose the method
for applications in tumor or stroke imaging where we are mainly interested
in contrast information within an fdEIT image. We suggest investigating
the forward and inverse problems of an imaging domain with a frequency-
dependent admittivity distribution, which has not been addressed rigorously
until now.
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1. Introduction

When we inject current into an electrically conducting object such as the human body through
surface electrodes, the internal current pathway and voltage distribution are determined by
its admittivity (complex conductivity) distribution, geometry and electrode con�guration. In
this paper, we denote the admittivity asγ = σ + iωε in S m−1 whereσ, ω, ε andωε are
the conductivity, angular frequency, permittivity and susceptivity, respectively. In electrical
impedance tomography (EIT), we measure the boundary voltage data resulting from multiple
injection currents in order to reconstruct images of the admittivity distribution inside an object
(Barber and Brown1984, Webster1990, Metherallet al 1996, Cheneyet al 1999, Saulnier
et al 2001, Holder2005).

Static imaging in EIT has suffered from the fundamental ill-posedness combined with
technical dif�culties caused by a limited amount of measurable information, unknown
boundary geometry, uncertainty in electrode positions, systematic measurement artifacts and
random noise. In time-difference EIT (tdEIT), measured data at two different times are
subtracted to produce images of changes in the admittivity distribution with respect to time.
Since the data subtraction can effectively cancel out common errors, tdEIT has shown its
potential as a new functional imaging modality in several clinical application areas (Holder
2005).

Since tdEIT requires time-referenced data, it is not applicable to cases where a single
image in time is required or such time-referenced data are not available. Examples include
imaging of tumors (Soniet al 2004, Kulkarni et al 2008, Trokhanovaet al 2008) and cerebral
stroke (McEwanet al 2006, Romsauerovaet al 2006and2007). Noting that admittivity spectra
of numerous biological tissues show frequency-dependent changes (Geddes and Baker1967,
Gabrielet al 1996, Grimnes and Martinsen2008, Oh et al 2008), frequency-difference EIT
(fdEIT) has been proposed to produce images of changes in the admittivity distribution with
respect to frequency. Lately, frequency-difference magnetic induction tomography (fdMIT)
has also been suggested for the detection of cerebral stroke.

In early fdEIT methods, frequency-difference images were formed by back-projecting
the logarithm of the ratio of two voltages at two frequencies (Grif�ths and Ahmed1987a,
1987b, Grif�ths 1987, Grif�ths and Zhang1989, Fitzgeraldet al 1999, Schlappaet al 2000).
More recent studies adopted the sensitivity matrix with a voltage difference at two frequencies
(Yerworth et al 2003, Romsauerovaet al 2006and2007, Bujnowski and Wtorek2007). In
MIT, induced voltage is proportional to the square of the frequency. For this reason, one
should scale the voltage at the second frequency by the square of the ratio of two frequencies
before any subtraction. Brunneret al (2006) and Zolgharniet al (2009a, 2009b) adopted this
frequency scaling in their fdMIT methods. All of these fdEIT and fdMIT methods are basically
utilizing a simple voltage difference at two frequencies and a linearized image reconstruction
algorithm. Alternatively, we may consider separately producing two static (absolute) images
at two frequencies and then subtract one from the other as suggested by Zolgharniet al (2009a)
for fdMIT. This approach, however, will not be able to alleviate the technical dif�culties of
the static imaging method.

Recently, Seoet al (2008) suggested a new fdEIT method using a weighted voltage
difference at two frequencies. They proposed two different contrast mechanisms in a
reconstructed frequency-difference image. The �rst is the contrast in admittivity values
between an anomaly and background. The second is the frequency dependence of an
admittivity distribution to be imaged. Even though they demonstrated the feasibility of
the new fdEIT method, there still remained several questions to be answered. First, we should
understand why the use of a weighted voltage difference is advantageous in fdEIT. Second,
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we must elaborate the fdEIT image reconstruction algorithm for more realistic cases where
background admittivity distributions are inhomogeneous and change with frequency. Third,
the algorithm must be validated by realistic numerical simulations and phantom imaging
experiments. This paper addresses these three issues.

Since the admittivity spectra of most biological tissues changes with frequency, we
will assume an imaging object with a frequency-dependent background admittivity in the
development of fdEIT theory and numerical simulations. For phantom experiments, this
means that we should not use a saline background. We will explain that a simple voltage
difference between two frequencies should produce bigger artifacts when the background
admittivity changes with frequency. After describing the reason why the weighted difference
method is desirable, we will formulate a new fdEIT image reconstruction algorithm using the
concept of an equivalent homogeneous admittivity. For the validation of the new method,
we will show results of numerical simulations and phantom experiments using a 16-channel
multi-frequency EIT (mfEIT) system KHU Mark1 (Ohet al 2007a, 2007b, 2008).

2. Methods

2.1. Problem definition

Let � be a two- or three-dimensional domain occupying an imaging object with its boundary
∂�. Using anL-channel mfEIT system, we attach surface electrodesEj for j = 1, . . . , L on
∂� and inject a sinusoidal currentI sin(ωt) between a chosen adjacent pair of electrodes. We
assume that the current source and sink are connected to electrodesEj andEj−1, respectively.
Using the complete electrode model (Chenget al 1989, Somersaloet al 1992, Vauhkonen
et al 1999), the resulting complex time-harmonic voltage, denoted asu

j
ω, satis�es⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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wherer = (x, y, z) is the position vector,zk is the contact impedance of thekth electrode
Ek, n is the outward unit normal vector on∂�, V

j,k
ω is the complex voltage onEk andγω is the

admittivity which depends onr andω. Setting a reference voltage having
∑L

k=1 V
j,k
ω = 0, we

can obtain a unique solutionuj
ω of (1).

We assume that we have measured the boundary voltagef
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L whereC is the set of the complex number. Using theL-

channel EIT system, we may injectL number of currents through adjacent pairs of electrodes
and measure the following voltage data set:

fω = (
f 1

ω, f 2
ω, . . . , f L
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) ∈ C
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The reciprocity principle off k
ω(j) = f

j
ω (k) indicates that only half of the data are independent.

Three voltage data off k
ω(k − 1), f k

ω(k) andf k
ω(k + 1) are measured on one or both of current-

carrying electrodes. Since they are in�uenced by the unknown electrode contact impedance,
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we discard them. For these two reasons,fω containsL(L−3)

2 number of independent data,
which become the maximum degree of freedom in the imaging problem. In fdEIT, we inject
currents with two frequencies ofω1 andω2 to obtain corresponding voltage data setsfω1 and
fω2, respectively. The goal is to visualize changes of the admittivity distribution betweenω1

andω2 by using two voltage data setsfω1 andfω2.
In tumor imaging or stroke detection using EIT, we are primarily interested in visualizing

an anomaly from a background. This implies that we should reconstruct a local admittivity
contrast. For a given injection current, however, the boundary voltagefω is signi�cantly
affected by the background admittivity, boundary geometry and electrodes positions, while
the in�uence of a local admittivity contrast due to an anomaly is much smaller. Since we utilize
two sets of boundary voltage data,fω1 andfω2 in fdEIT, we need to evaluate their capability
to perceive the local admittivity contrast. As in tdEIT, the rationale is to eliminate numerous
common errors by subtracting the background component offω1 from fω2, while preserving
the local admittivity contrast component.

2.2. Simple difference (fω2 − fω1) cannot cancel out common errors

The simple voltage differencefω2 −fω1 may work well for an imaging object whose background
admittivity does not change with frequency. A typical example is a saline phantom. For
realistic cases where background admittivity distributions change with frequency, it will
produce artifacts in reconstructed fdEIT images, as shown in section3. To understand this,
let us consider a very simple case where the imaging object has a homogeneous admittivity
distribution, that is,γω = σω + iωεω is independent of the positionr. In such a homogeneous
object, induced voltages̄uj

ω1 and ū
j
ω2 satisfy the Laplace equation with the same boundary

data, and therefore the two corresponding voltage data vectorsf̄ω1 andf̄ω2 are parallel in such
a way that

f̄ω2 = γω1

γω2

f̄ω1.

When there exists a small anomaly inside the imaging object, we may assume that
the induced voltages are close to the voltages without any anomaly. In other words,
the voltage differencefω2 − fω1 in the presence of a small anomaly can be expressed as
fω2 − fω1 ≈ f̄ω2 − f̄ω1 = γω1

γω2
f̄ω1 − f̄ω1 = β f̄ω1 for a complex constantβ. This means that

the simple differencefω2 − fω1 signi�cantly depends on the boundary geometry and electrode
positions except the special case wherefω2 − fω1 = 0. This is the main reason why the
use of the simple differencefω2 − fω1 cannot deal with common modeling errors even for a
homogeneous imaging object.

2.3. Why should weighted difference (fω2 − αfω1) be used in fdEIT?

An imaging object including a background and anomaly has an admittivity distributionγω

which changes with frequency. We de�ne a weighted difference of the admittivity at two
different frequenciesω1 andω2 as

δγ ω2
ω1

= αγω2 − γω1 (2)

whereα is a complex number. We assume the following two conditions:

(i) in the background region, especially near the boundary,δγ ω2
ω1

≈ 0;
(ii) in the anomaly,δγ ω2

ω1
is signi�cantly different from 0.
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In order to extract the anomaly from the background, we investigate the relationship
betweenfω2 and fω1. We should �nd a way to eliminate the background in�uence while
maintaining the information of the admittivity contrast across the anomaly. We decompose
fω2 into a projection part ontofω1 and the remaining part:

fω2 = αfω1 + hω2, α = 〈fω2, fω1〉
〈fω1, fω1〉

(3)

where〈·, ·〉 is the standard inner product of two vectors. Note thathω2 is orthogonal tofω1.
In the absence of the anomaly, we may setγω2 = 1

α
γω1 and this results infω2 = αfω1.

Therefore, the projection termαfω1 mostly contains the background information, while the
orthogonal termhω2 holds the anomaly information. To be precise,αfω1 provides the same
information asfω1 which includes in�uences of the background admittivity, boundary geometry
and electrode positions. The orthogonal termhω2 = fω2 − αfω1 contains the core information
about a nonlinear change due to the admittivity contrast across the anomaly. This explains
why the weighted differencefω2 − αfω1 must be used in fdEIT.

2.4. Frequency-difference image reconstruction algorithm

Applying a linear approximation (Cheneyet al 1990, Lionheartet al 2005), we get the
following relation:∫

�

δγ ω2
ω1

(r)∇uj
ω1

(r) · ∇uk
ω2

(r) dr ≈ I
(
f j

ω2
(k) − αf j

ω1
(k)

)
, j, k = 1, . . . , L. (4)

Givenα, we can reconstruct an image ofδγ ω2
ω1

using the weighted differencefω2 −αfω1. Since
α is not known in practice, we need to estimate it fromfω2 andfω1 using (3).

We discretize the imaging object� as� = ∪N
i=1�i where�i is theith pixel. The number

N should be limited byN � L×(L−3)
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be the characteristic function of theith element

�i , that is,χ�i
= 1 in �i and zero otherwise. Letξ1, . . . , ξN be complex numbers such that∑N
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Iγω1γω2
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j
ω ≈ 1

γω
∇Uj whereUj

is the solution of (1) with γω = 1, it follows from (4) that
N∑
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∫
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)
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∫
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δγ ω2
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≈ (
f j
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The reconstruction method using the approximation (4) is reduced to reconstruct∑N
i=1 ξiχ�i

that minimizes the following:

N∑
j,k=1

∣∣∣∣∣
N∑

i=1

(
ξi

∫
�i

∇Uj(r) · ∇Uk(r) dr − (
f j

ω2
(k) − αf j

ω1
(k)

))∣∣∣∣∣
2

(6)

whereα is the complex number described in section2.3. In order to �nd ξ = (ξ1, . . . , ξN),
we compute the sensitivity matrixA themnth entry of which is

amn =
{ ∫

�n
∇Uj · ∇Uk dr if |j − k| > 1

0 if |j − k| � 1
(m = L(j − 1) + k).

We can computeξ = (ξ1, . . . , ξN) by solving the following linear system through a truncated
singular value decomposition (tSVD):

Aξ = fω2 − αfω1 .
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It remains to compute the fdEIT imageδγ ω2
ω1

from the knowledge ofξ . We need to
estimate the equivalent homogeneous (constant) admittivity ˆγω corresponding toγω to use the
following approximation:

δγ ω2
ω1

≈ I γ̂ω1γ̂ω2

N∑
i=1

ξiχ�i
.

From the divergence theorem, we obtain the following relation:

γ̂ω

γ̂0
= γ̂ω

γ̂0

∫
�

∇uk,ω · ∇uj,0∫
�

∇uk,ω · ∇uj,0
≈ f j,0(k)

f k,ω(j)
for any j, k ∈ {1, 2, . . . , L}.

For our 16-channel mfEIT system (Ohet al 2007a, 2007b, 2008), we may choose

γ̂ω

γ̂0
= 1

32

16∑
j=1

(
f j,0(j + 3)
f j+3,ω(j)

+
f j,0(j − 3)

f j−3,ω(j)

)
(7)

where we identifyL + j = j and−j = L − j for j = 1, 2, 3.
In summary, we reconstruct an fdEIT imageδγ ω2

ω1
by

δγ ω2
ω1

= I γ̂ω1γ̂ω2A
−(

fω2 − αfω1

) = I γ̂ 2
ω0

γ̂ω1

γ̂ω0

γ̂ω2

γ̂ω0

A
−(

fω2 − αfω1

)
(8)

whereA
− is the pseudo-inverse ofA estimated by the tSVD. In (8), γ̂ω1

γ̂ω0

γ̂ω2
γ̂ω0

can be estimated
from (7) using another low-frequency measurementfω0 . If we chooseω0 low enough, ˆγω0

may have a negligibly small imaginary part. In such a case, we may setδγ ω2
ω1

/
γ̂ 2

ω0
as a

reconstructed fdEIT image, which is equivalent to the complex imageδγ ω2
ω1

divided by an
unknown real constant. In practice, it would be desirable to setω0 smaller than 1 kHz, for
example 100 Hz.

This scaling will be acceptable for applications where we are mainly looking for a contrast
change within an fdEIT image. These may include detections of tumors and strokes. In order
to quantitatively interpret absolute pixel values of an fdEIT image, we must estimate the
value ofγ̂ω0, which requires the knowledge of the object size, boundary shape and electrode
positions. Alternatively, we may estimate values of ˆγω1 andγ̂ω2 in (8) without using the third
frequencyω0. This will again need geometrical information about the imaging object and
electrode positions.

2.5. Numerical simulation

We performed numerical simulations on a unit disk� = {(x, y) : x2 + y2 < 1} with 16
electrodes equally spaced around its circumference. The electrode contact impedance of
the complete electrode model in (1) was set to be 3000� m2. Since we discarded all
the voltage data measured on one or both of current-carrying electrodes, the choice of this
value is irrelevant in our case. Inside the disk, we placed an anomaly occupying the region
D = {(x, y) : (x + 0.45)2 + y2 < 0.152}. Admittivity values of the background and anomaly
were adopted from measured values as described in the next section.

In all simulations, we used two frequencies ofω1/2π = 5 kHz andω2/2π = 50 kHz
as imaging frequencies and the third frequency ofω0/2π = 1 kHz for the estimation of
equivalent homogenous admittivity values discussed in section2.4. We numerically solved
the forward problem in (1) to generate simulated datafω1 , fω2 andfω0 . We added randomly
a generated white Gaussian noise to the simulated data. The amounts of noise were 0.25%
(relative to root mean square of noise-free simulated data) and 0.5% for the real and imaginary
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Table 1. Measured admittivity values of six different materials including 0.5% saline, cylindrical
pieces of cucumber, banana and carrot, mixture of carrot pieces with 1% saline and macerated
banana at three different frequencies of 1, 5 and 50 kHz.

Measured admittivity value in Sm−1

0.5% saline Cucumber Carrot Banana Carrot+1% sal. Mac. banana

σ ωε σ ωε σ ωε σ ωε σ ωε σ ωε

1 kHz 0.130 0 0.044 0.004 0.023 0.011 0.035 0.016 0.208 0.102 0.221 0.109
5 kHz 0.130 0 0.051 0.015 0.031 0.012 0.043 0.017 0.208 0.103 0.228 0.110
50 kHz 0.130 0 0.105 0.076 0.100 0.050 0.102 0.052 0.232 0.123 0.283 0.150

part, respectively. The frequency-difference imageδγ ω2
ω1

was reconstructed based on (8). To
examine the effects of the weighting complex numberα, we tried the fdEIT algorithm twice
by using the simple differencefω2 − αfω1 with α = 1 and the weighted differencefω2 − αfω1

with α �= 1.

2.6. Phantom experiment

We constructed a two-dimensional phantom with 200 mm diameter, 100 mm height and 16
equally spaced stainless steel electrodes around its circumference. We �lled the phantom
with a chosen background material of 0.5% saline, mixture of carrot pieces with 1% saline or
macerated banana (Romsauerovaet al 2007). As an anomaly, we used a cylindrical piece of
cucumber (4 mm diameter and 5 mm length), banana (3.6 mm diameter and 7.5 mm length)
or carrot (4 mm diameter and 5.2 mm length).

We measured admittivity values of these six different materials using the four-electrode
bioimpedance spectroscopy (BIS) method as described in Ohet al (2008). The time intervals
between BIS measurements and imaging experiments were less than 10 min. We conducted
both BIS measurements and imaging experiments at room temperature of about 25◦C.

Using the 16-channel mfEIT system KHU Mark1 (Ohet al 2007a, 2007b, 2008), we
injected sinusoidal currents and measured boundary complex voltages between adjacent pairs
of electrodes. The lowest reference frequencyω0/2π introduced in section2.4was set to be
1 kHz. The imaging frequenciesω1/2π andω2/2π were 5 and 50 kHz, respectively. We
repeated the same experiment several times to check the reproducibility.

3. Results

3.1. Numerical simulation results

Table1 summarizes measured admittivity values of six materials at three different frequencies
of 1, 5 and 50 kHz. The lowest frequency of 1 kHz was used as the reference frequency
ω0/2π to evaluate the equivalent homogeneous admittivity in (7). The admittivity of 0.5%
saline is resistive and show no frequency dependence in the range below 50 kHz. Other
materials have both resistive and reactive components and their admittivity values change with
frequency.

For the simplest case of a simulated cucumber against saline, both the simple and weighted
difference approaches produced reasonably accurate images (�gure1). For the case of a
homogeneous background admittivity (simulated macerated banana), both methods produced
reconstructed images with spatial noise (�gure2). We estimated the noise level by computing
the standard deviation of pixel values. The simple difference method produced noise that is
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0.5% Saline  

Cucumber 

Real Part 

Simple Difference fdEIT 

1 kHz 

Frequency 

50 kHz 

5 kHz 

Saline        Cucumber 

0.13 

0.13 

0.13 

0.044+0.004i 

Admittivity [S/m]

Weighted Difference fdEIT 

Imaginary 

Part 

0.051+0.015i 

0.105+0.076i 

Figure 1. Numerical simulations of fdEIT image reconstructions using an imaging object including
an anomaly of cucumber in a saline background. The simple difference method produced similar
fdEIT images to those by using the weighted difference method since the background admittivity
did not change much with frequency.

Simple Difference fdEIT 

Imaginary 

Part 
1 kHz 

Frequency 

50 kHz 

5 kHz 

Admittivity [S/m]

Real Part 

Weighted Difference fdEIT 

Macerated Banana  

0.221+0.109i 

0.228+0.110i 

0.283+0.150i  

Macerated Banana 

Figure 2. Numerical simulations of fdEIT image reconstructions using a homogeneous imaging
object whose admittivity value changed with frequency. Reconstructed fdEIT images using the
simple difference show severe artifacts even for the case of such a homogeneous model. Note that
images using the weighted difference are free from artifacts.

4–25 times larger than that of the weighted difference method. For the case of the banana
anomaly with the background of carrot pieces, the contrast between the anomaly and the
background was ten times higher in the images produced by the weighted difference method
(�gure 3). Using the simple difference method, we may fail to extract the contrast information
properly as explained in sections2.2and2.3.

In �gures 1 and3, we scaled reconstructed fdEIT images using the weighted difference
to have their maximum absolute contrasts equal to those of the simple difference. For the
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Real Part 

Carrot Pieces 
with 1% Saline  

Banana 
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Part 

Simple Difference fdEIT 

1 kHz 

Frequency 

50 kHz 

5 kHz 

Admittivity [S/m]

0.208+0.102i 

Weighted Difference fdEIT 

Carrot Pieces     Banana 

 

0.208+0.103i 

0.232+0.123i 

0.035+0.016i 

0.043+0.017i 

0.102+0.052i 

Figure 3. Numerical simulations of fdEIT image reconstructions using an imaging object including
an anomaly of banana in a background of carrot pieces. Admittivity values of the anomaly and
background changed with frequency. Reconstructed fdEIT images using the weighted difference
distinguish the anomaly better than those by using the simple difference.

Real Part

Simple Difference fdEIT   

Imaginary

Part

Saline

Carrot

200

100

0

-100

-200

100

50

0

-50

-100

  Weighted Difference fdEIT

Banana

Figure 4. Imaging experiments using a phantom including two anomalies of carrot and banana in
a saline background. Both of the simple and weighted difference method successfully produced
fdEIT images since the background admittivity did not change much with frequency.

homogeneous case in �gure2, they were compared without scaling. For all numerical
simulations, two fdEIT images to be compared were plotted within the same contrast value
range.

3.2. Phantom experiment results

Both of the simple and weighted difference methods produced similar images of a saline
phantom with two anomalies since the background admittivity did not change much with
frequency (�gure4). We have tried two homogeneous phantoms whose conductivity values
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Real Part

Simple Difference fdEIT

Imaginary
Part

Mixture of Carrot
Pieces and Saline

Macerated Banana

Real Part

Imaginary
Part

10

5

0

-5

-10

5

0

-5

10

5

0

-5

-10

10

5

0

-5

-10

Weighted Difference fdEIT

Figure 5. Imaging experiments using two homogeneous phantoms. One was �lled with a mixture
of carrot pieces and 1% saline. The other included macerated banana. Their admittivity values
changed with frequency and the simple difference method produced fdEIT images with larger
artifacts compared with those using the weighted difference method.

changed with frequency. One was �lled with the mixture of carrot pieces and 1% saline and the
other was �lled with macerated banana. The simple difference method produced images with
bigger artifacts compared with the weighted difference method (�gure5). The noise level was
estimated to about three times larger in the images produced by the simple difference method.
Placing a banana anomaly in one case and a carrot anomaly in the other case, we reconstructed
fdEIT images of the two phantoms including the anomaly. The amounts of artifacts are larger
in the images using the simple difference method, and the contrast of the anomaly with respect
to the background was larger in the images produced by using the weighted difference method
(�gure 6).

4. Discussion and conclusion

For some applications of EIT including stroke detection and tumor imaging, fdEIT could be
a promising alternative to static EIT imaging. In those cases, it is important to visualize
a relative contrast between an anomaly and the background. When their admittivity values
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Figure 6. A banana or carrot anomaly was added to the �rst and second phantom in �gure5,
respectively. Admittivity distributions of both phantoms changed with frequency, and the simple
difference method produced fdEIT images with larger artifacts compared with those using the
weighted difference method.

change with frequency, we found that the simple voltage difference between two frequencies
fails to produce reliable fdEIT images.

The voltage difference is strongly in�uenced by the frequency dependence of the
background admittivity distribution. In order to extract the effect of a local admittivity
contrast due to the existence of an anomaly, we have proposed the use of a weighted frequency
differencefω2 −αfω1 for fdEIT imaging. Both numerical simulations and phantom experiments
show that the weighted difference method is superior to the simple difference method.

The proposed algorithm is based on the fact that the presence of an admittivity anomaly
produces the componenthω2 of the data vectorfω2 at ω2 in (3) that is orthogonal to the other
data vectorfω1 at ω1. This componenthω2 can be obtained from the weighted difference
fω2 − αfω1. On the other hand,fω2 − αfω1 = 0 for any homogeneous medium. The proposed
weighted difference method is an effective way to extract a portion of useful data related with
the anomaly while discarding unnecessary common background information.
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Improvements in terms of the image reconstruction algorithm should be pursued including
incorporation of a three-dimensional model and regularization. Compared with tdEIT, fdEIT
requires an mfEIT system with much less systematic measurement errors (McEwanet al 2007).
The current source must maintain its high output impedance and stability over the frequency
range to be used in fdEIT imaging. All of the voltmeters implemented in a parallel system
must have an identical frequency response that is close to the ideal one after calibration. We
plan to upgrade the mfEIT system KHU Mark1 for better performance in fdEIT imaging.

In all application studies, we should note that the proposed fdEIT method using the
weighted difference can provide only contrast information within an fdEIT image. Without
knowing the geometrical data of the imaging object and electrode positions, absolute pixels
values do not provide any quantitative information. Though the proposed fdEIT algorithm is
promising for imaging the admittivity contrast of an anomaly such as blood in hemorrhagic
stroke and cancer tissue in the breast, more thorough validation studies are needed including
animal and human experiments. Since fdEIT is more robust against motion artifacts, we
may also try a time series of fdEIT imaging for other applications including lung or stomach
imaging.
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