THE LASCAR GROUP, AND THE STRONG TYPES OF HYPERIMAGINARIES

BYUNGHAN KIM

Abstract. This is an expository note on the Lascar group. We also study the Lascar group over hyperimaginaries, and make some new observations on the strong types over those. In particular we show that in a simple theory, \(
\Ltp(a/A) \equiv \stp(a/A)
\) for real tuples \(a\) and \(A\), then the same holds for hyperimaginaries. A question remains whether this holds in any theory.

The Lascar group introduced by Lascar [8], and related subjects have been studied by many authors ([9][1][7][6][3] and more). Notably in [9][1], a new look on the Lascar group is given, and using compact Lie group theory Lascar and Pillay proved that any bounded hyperimaginary is interdefinable with a sequence of finitary bounded hyperimaginaries. Good summaries on the Lascar group are written in [10][11]. While this is another short expository note stating known results in [8][9][1][7], we supply a couple of new observations. We study the Lascar group in slightly more general context namely over hyperimaginaries. The notion of strong types over hyperimaginaries is somewhat subtler even at the level of the definition (see Example 3.5). As a by-product we show that in a simple theory if \(
\Ltp(a/A) \equiv \stp(a/A)
\) for real tuples \(a\) and \(A\), then the same holds for hyperimaginaries. A question remains whether this holds in any theory.

We work with an arbitrary complete theory \(T\) in \(L\), and a fixed large saturated model \(\mathcal{M} \models T\) of size \(\bar{\kappa}\), as usual. We recall some of definitions. Unless said otherwise a tuple can have an infinite size \(< \bar{\kappa}\). By a hyperimaginary we mean an equivalence class of a type-definable equivalence relation over \(\emptyset\). So a hyperimaginary has the form \(a/E = a_E\) where \(a\) is a tuple from \(\mathcal{M}\) and \(E(x, y)\) is the \(\emptyset\)-type-definable equivalence relation on \(\mathcal{M}^{\bar{\kappa}}\). We call \(a_E\) an \(E\)-hyperimaginary. We say the hyperimaginary is finitary if \(a\) is a finite tuple. In general we put \(|a_E| := |a|\). In the note arity means an arity of a real tuple.

From now on \(a, b, c, \ldots, A, B, \ldots\) denote hyperimaginaries, but \(M, N, \ldots\) denote elementary small submodels of \(\mathcal{M}\). Clearly any tuple from

This is a note submitted for the proceedings of the conference: Recent developments in model theory, Oléron, France, June 2011, where the author gave a talk on different subjects in [4],[5]. This work is supported by an NRF grant 2010-0016044.
\mathcal{M} or \mathcal{M}^{eq} is also a hyperimaginary. We call such a tuple real or imaginary, respectively. Given a hyperimaginary c, $\text{Aut}_c(\mathcal{M})$ denotes the set of all automorphisms of \mathcal{M} fixing c (i.e., fixing the equivalence class setwise). A relation is said to be ‘over c’ or ‘c-invariant’ if it is $\text{Aut}_c(\mathcal{M})$-invariant. A hyperimaginary a is said to be bounded over b (written $a \in \text{bd}(b)$) if a has only boundedly many automorphic conjugates over b. Similarly we say a is definable (algebraic, resp.) over b written $a \in \text{acl}(b)$ ($a \in \text{acl}(b)$ resp.) if $\{f(a) \mid f \in \text{Aut}_b(\mathcal{M})\}$ is a singleton (finite, resp.). Two hyperimaginaries a, b are said to be interdefinable or equivalent if $a \in \text{dcl}(b)$ and $b \in \text{dcl}(a)$. We use non-standard notation $a \subseteq b$ to denote $a \in \text{dcl}(b)$. We put $\text{acl}^{eq}(b) = (\text{acl}(b) \cap \mathcal{M}^{eq}) \cup \{b\}$.

Notice the difference between $\text{acl}(b)$ and $\text{acl}^{eq}(b)$; both are somewhat newly introduced when b is a hyperimaginary. In Corollary 3.4 we shall see that $\text{acl}(b)$ and $\text{acl}^{eq}(b)$ are interdefinable. As is known the type of a over b, $\text{tp}(a/b)$, makes sense, and $p \in S_E(b)$ means p is a type of some E-hyperimaginary over b. As usual $a \equiv_b c$ means $c \models \text{tp}(a/b)$.

1. **Lascar group**

We restate definitions from [8][9][7]. **Throughout we fix a hyperimaginary A.** Recall that $\text{Aut}_A(\mathcal{M})(= \text{a subgroup of Aut}_A(\mathcal{M})$ generated by $\{f \in \text{Aut}_A(\mathcal{M}) \mid f \in \text{Aut}_M(\mathcal{M})$ for some model $M \supseteq A\}$ is a normal subgroup of $\text{Aut}_A(\mathcal{M})$. We recall a fact on Lascar (strong) types.

Definition 1.1. Let a, b be hyperimaginaries such that $\text{tp}(a/A) = \text{tp}(b/A)$. We define $d_A(a, b)$ to be the least natural number $n(\geq 1)$ such that: there are sequences $I_1, I_2, ..., I_n$ and hyperimaginaries $a = a_0, a_1, ..., a_n = b$ such that $a_i \triangleq_i I_i$ and $a_i \triangleq_i I_i$ are both A-indiscernible for each $1 \leq i \leq n$. (If there is no such $n < \omega$, then we write $d_A(a, b) = \infty$.)

The following is proved in [7] when a, b, A are real. The same proof works for hyperimaginaries.

Fact 1.2. The following are equivalent (a, b are E-hyperimaginaries).
In (1), we can choose $a \equiv^T_A b$, i.e. there is $f \in \text{Aut}_A(M)$ such that $f(a) = b$.

(2) $d_A(a, b) < \omega$.

(3) $F(a, b)$ for any A-invariant bounded equivalence relation F coarser than E.

In conclusion $x_E \equiv^T_A y_E$ is an invariant bounded equivalence relation over A coarser than E, and is the finest among those.

Definition 1.3. (Lascar group) $\text{Gal}_L(M, A) := \text{Aut}_A(M)/\text{Autf}_A(M)$.

In the rest of the paper, when there is no risk of confusion we may omit A for notational convenience, so $A \subseteq M$ for any model mentioned below, and $\text{Aut}(M)$, $\text{Autf}(M)$ below indeed mean $\text{Aut}_A(M)$, $\text{Autf}_A(M)$, respectively. As said in the introduction, sections 1 and 2 form a summary of known results from [1][9][10] when A is real. Most of the arguments there go through even when A is a hyperimaginary, and we will repeat some arguments for the sake of completion.

Remark 1.4. We argue that the Lascar group depends only on T and A, and we write $\text{Gal}_L(T, A)$ for $\text{Gal}_L(M, A)$. We have $|\text{Gal}_L(T, A)| \leq 2^{|T|+|A|}$.

(1) Let M be a (small) elementary submodel of M. For $f, g \in \text{Aut}(M)$, if $f(M) \equiv_M g(M)$ then $f.\text{Autf}(M) = g.\text{Autf}(M)$ in $\text{Gal}_L(M)$: There is h in $\text{Autf}(M)$ which fixes M pointwise and sends $f(M)$ to $g(M)$. Then since $s := f^{-1}.h^{-1}.g$ fixes M too, $s \in \text{Autf}(M)$. Thus the claim follows.

(2) In (1), we can choose M having size $|T| + |A|$. Since there are at most $2^{|T|+|A|}$-many types over M, we have $|\text{Gal}_L(M, A)| \leq 2^{|T|+|A|}$.

(3) Let $M' > M$ be saturated and $|M'| > |M|$. There is a canonical isomorphism from $\text{Gal}_L(M)$ to $\text{Gal}_L(M')$:

Let $f \in \text{Aut}(M)$. Any two automorphisms of M' extending f are in the same coset in $\text{Gal}_L(M')$. This induces a homomorphism $\alpha : \text{Aut}(M) \rightarrow \text{Gal}_L(M')$. We claim that $\text{ker}(\alpha) = \text{Autf}(M)$: If $f \in \text{Autf}(M)$ then clearly any extension of f in $\text{Aut}(M')$ is in $\text{Autf}(M')$. Conversely, let $f' \in \text{Autf}(M')$ extend $f \in \text{Aut}(M)$. Then for a small model $M' < M$, by 1.2, $M \equiv^T_M f'(M) = f(M)$ in M. Hence there is $g \in \text{Autf}(M)$ such that $f(M) = g(M)$. Then $g^{-1}.f \in \text{Aut}(M)$ since it fixes M, so $f \in \text{Autf}(M)$ too.

Let us also write $\alpha : \text{Gal}_L(M) \rightarrow \text{Gal}_L(M')$ for the induced injection. We claim that α is surjective: Let $g \in \text{Aut}(M')$. For a small model $M' < M$, there is $M' \sim M$ such that $g(M) \equiv_M$
Now there is \(f \in \text{Aut}(\mathcal{M}) \) sending \(\mathcal{M} \) to \(\mathcal{M}' \). Then by (1), \(\alpha(f) = g \in \text{Aut}(\mathcal{M}') \).

In the rest of this section, for \(f, g \in \text{Aut}(\mathcal{M}) \), we write \(f \approx g \) if \(f \cdot \text{Aut}(\mathcal{M}) = g \cdot \text{Aut}(\mathcal{M}) \).

We shall endow \(\text{Gal}_L(T) \) with a quotient topology to make it a compact (but not necessarily Hausdorff) topological group. Let \(\pi : \text{Aut}(\mathcal{M}) \to \text{Gal}_L(= \text{Gal}_L(T, A)) \) be the canonical projection. Fix a model \(M \prec \mathcal{M} \) and let

\[
S_M(\mathcal{M}) := \{ \text{tp}(f(\mathcal{M})/\mathcal{M}) | f \in \text{Aut}(\mathcal{M}) \},
\]
equipped with its Stone topology. Then by 1.4(1), \(\pi \) factors through the surjection \(\mu : \text{Aut}(\mathcal{M}) \to S_M(\mathcal{M}) \) sending \(f \) to \(\text{tp}(f(\mathcal{M})/\mathcal{M}) \), i.e. there is a canonical surjection \(\nu = \nu_M : S_M(\mathcal{M}) \to \text{Gal}_L \) such that \(\pi = \nu \cdot \mu \). We use these maps. We give \(\text{Gal}_L \) the quotient topology under the map \(\nu \). This topology is independent from the choice of \(M \): It suffices to show this for a model \(N(\prec \mathcal{M}) \), an elementary extension of \(M \) (since any two models have a common extension). Now the map \(\nu_N : S_N(N) \to \text{Gal}_L \) factors through the restriction map \(S_N(N) \to S_M(\mathcal{M}) \) sending \(\text{tp}(f(N)/N) \) to \(\text{tp}(f(\mathcal{M})/\mathcal{M}) \). Since the restriction map is continuous and both \(S_N(N), S_M(\mathcal{M}) \) are compact Hausdorff, \(\nu_M, \nu_N \) induce the same quotient topology.

Lascar originally introduced the topology on \(\text{Gal}_L \) in terms of ultrafilters. It is known that his and the quotient topology coincide. Contrary to what the reader might expect the proof that \(\text{Gal}_L \) is a topological group is quite subtle. The only known complete and correct proof can be found in [10], and the proof goes through when working over some hyperimaginary \(A \):

Proposition 1.5. \(\text{Gal}_L(T, A) \) is a compact topological group.

2. Quotient groups of the Lascar group

We introduce two canonical subgroups of \(\text{Gal}_L(T, A) \). Note that \(\overline{\{\text{id}\}} \) is a closed normal subgroup of \(\text{Gal}_L(T, A) \). The connected component of \(\text{Gal}_L(T, A) \) containing \(\text{id} \) is denoted by \(\text{Gal}_{0L}(T, A) \); it is also closed and normal.

Definition 2.1.

1. \(\text{Aut}_{KP}(\mathcal{M}, A) := \pi^{-1}(\overline{\{\text{id}\}}) \).
2. \(\text{Aut}_{S}(T, A) := \pi^{-1}(\text{Gal}_{0L}(T, A)) \).
3. \(\text{Gal}_{KP}(T, A) := \text{Gal}_L(T, A)/\overline{\{\text{id}\}} = \text{Aut}_A(\mathcal{M})/\text{Aut}_{KP}(\mathcal{M}, A) \).
4. \(\text{Gal}_{S}(T, A) := \text{Gal}_L(T, A)/\text{Gal}_{0L}(T, A) = \text{Aut}_A(\mathcal{M})/\text{Aut}_{S}(T, A) \).
5. We say that \(T \) is \(G \)-compact over \(A \) if \(\text{Gal}_L(T, A) \) is Hausdorff.
KP stands for Kim-Pillay and S stands for Shelah or ‘strong’. Again, below we may omit the subscript A.

Remark 2.2.

1. Recall that for topological groups $H < G$, the quotient group G/H is Hausdorff iff H is closed in G. Hence both $\text{Gal}_{KP}(T)$, $\text{Gal}_S(T)$ are compact Hausdorff. Moreover $\text{Gal}_S(T)$ is totally disconnected, so a profinite group.

Now T is G-compact iff $\{\text{id}\}$ is closed iff $\text{Autf(M)} = \text{Autf}_{KP}(M)$ (then $\text{Gal}_{KP}(T)$ and $\text{Gal}_L(T)$ are canonically isomorphic).

2. For the rest of this section we endow $\text{Aut}(M)$ with a topology having basic open sets of the form $\{f \in \text{Aut}(M)|f(a) = b\}$ for some real n-tuples $a, b \in M$. (However the topologies of $\text{Gal}_S, \text{Gal}_{KP}$ are always the quotient topologies obtained from Gal_L.)

3. Let Γ be a subgroup of $\text{Aut}_A(M)$. Fix F an \emptyset-type-definable equivalence relation on $M^\alpha (\alpha : \text{an arity})$. We write E^F_Γ to denote an equivalence relation such that for F-hyperimaginaries c, d, we have $E^F_\Gamma(c, d)$ iff $d = f(c)$ for some $f \in \Gamma$. So E^F_Γ is an equivalence relation on M^α/F, or equivalently an equivalence relation on M^α coarser than F. When we write $E^F_\Gamma(x, y)$, $x = y$. We omit F if F is clear from context. Note that if Γ is normal then E_Γ is A-invariant, but in general it need not be. When $\Gamma = \text{Autf}(M, A)$ we know that E_Γ is \equiv_A^L, and $E_{\text{Autf}_{KP}(M, A)}$ is denoted by \equiv_A^{KP}. Notice that Γ is closed iff $\Gamma = \overline{\Gamma} = \{f \in \text{Aut}_A(M)| \text{ for each finite real tuple } a \in M, E^F_\overline{\Gamma}(a, f(a)), \text{ i.e. } f \text{ stabilizes all } E^F_\overline{\Gamma}\text{-classes of finite arities}\}$.

Lemma 2.3.

1. Let H' be a closed normal subgroup of Gal_L, and let $H = \pi^{-1}(H')$. Then given F, E^F_H is a type-definable bounded equivalence relation (over A).

2. The restriction map π is continuous, so both $\text{Autf}_S(M)$, $\text{Autf}_{KP}(M)$ are closed in $\text{Aut}(M)$.

Proof. (1) Let $a = u_F \models p(x) \in S_F(A)$ where u is a real tuple of arity α.

Fix a model $(u \subseteq M = M_p \prec M$. Since H' is closed, there is $\Phi(x', M)$ over M type-defining $\nu^{-1}(H')$ i.e. $f \in H$ iff $\Phi(f(M), M)$ holds. Note that H being a group implies that $\Phi(x', y')$ type-defines an equivalence relation on $\text{tp}(M)$. Moreover $\nu \equiv_L^L A \to \Phi(x', M)$. Thus $\Phi(x', y')$ is a bounded equivalence relation on $\text{tp}(M/A)$. Note also that since H is normal it easily follows that $\Phi(x', y') \equiv E^F_H(x', y')$ on $\text{tp}(M/A)$.

Then by taking existential quantifiers to $\Phi(x', y')$, clearly $E^F_H(x, y)$ is type-definable on $q(x) = \text{tp}(u/A)$ too. Hence $E^F_H(x, y)$ is type-defined
The following are equivalent.

(1) Due to 2.3(2), Proposition 2.4.

is a bounded type-definable equivalence relation (over A). We write $\Psi_p(x, y) \equiv \exists w(E_H^p(z, w) \land q(z) \land q(w) \land F(z, x) \land F(w, y))$ on $\text{tp}(a/A) = p(x)$. We put

$$\Psi'_p(x, y) \equiv (\Psi_p(x, y) \land p(x) \land p(y)) \lor x \equiv_A y.$$

Therefore clearly $E_H^p(x, y) \leftrightarrow \{\Psi'_p| p(x) \in S_F(A)\}$.

(2) Let $f \in \text{Aut}(\mathcal{M})$, and let U be an open subset of $\text{Gal}_L(T)$ containing $\pi(f) = f$. $\text{Aut}(\mathcal{M})$. Since ν is continuous, $\nu^{-1}(U) \subseteq S_M(M)$ contains a basic open neighborhood $V_{\varphi(x)} = \{\text{tp}(g(M)/M) \ni \varphi(x) : g \in \text{Aut}(\mathcal{M})\}$ of $\mu(f) = \text{tp}(f(M)/M)$, where $\varphi(x)$ is some formula over M. Let $a \in M$ be a finite tuple corresponding to x. Then simply

$$\mu^{-1}(V_{\varphi(x)}) = \{g \in \text{Aut}(\mathcal{M}) : g(a) \models \varphi(x)\}.$$

Since $f \in \mu^{-1}(V_{\varphi(x)})$, in particular $\models \varphi(f(a))$ holds. Therefore a basic open neighborhood $\{h \in \text{Aut}(\mathcal{M})| h(a) = f(a)\}$ of f is contained in $\mu^{-1}(V_{\varphi(x)})$. Hence π is continuous. \hfill \square

Now fix a closed normal subgroup $H' \triangleleft \text{Gal}_L$ and let $H = \pi^{-1}(H')$. We write $x \equiv_H y$ if $E_H^p(x, y)$ holds, which on any arity, due to 2.3(1), is a bounded type-definable equivalence relation (over A).

Proposition 2.4.

1. $H = \{f \in \text{Aut}(\mathcal{M})| f$ stabilizes all the \equiv_H-classes of any arities $\} = \{f \in \text{Aut}(\mathcal{M})| f$ stabilizes all the \equiv_H-classes of finite real arities $\}$.

2. The following are equivalent.

 (a) $c_0 \equiv_H c_1$ for real tuples.

 (b) $c'_0 \equiv_H c'_1$ for each corresponding finite subtuple c'_i of c_i ($i = 0, 1$).

Proof. (1) Due to 2.3(2), H is closed in $\text{Aut}(\mathcal{M})$. Hence it comes from 2.2(3).

(2) Clearly (a) implies (b). Assume (b) holds. In this proof all the tuples are real. Note that there is $h' \in H$ such that $h'(c'_0) = c'_1$. Hence for any finite d_0, there is $d_1 = h'(d_0)$ with $c'_0 d_0 \equiv_H c'_1 d_1$. Thus by compactness there is a sufficiently saturated M_i containing c_i such that for each finite corresponding $b_i \in M_i$, $b_0 \equiv_H b_1$ (\ast). In particular $\text{tp}(M_0) = \text{tp}(M_1)$ and there is $h \in \text{Aut}(\mathcal{M})$ sending M_0 to M_1. Let d'/ \equiv_H with arbitrary finite d be given. We claim h fixes d'/ \equiv_H, so by (1), $h \in H$, and (a) follows: Due to the saturation of M_0 and the boundedness of \equiv_H, there is $d' \in M_0$ such that $\text{tp}(d) = \text{tp}(d')$ and $d \equiv_H d'$ holds. Then by (\ast), h clearly fixes $d'/ \equiv_H = d/ \equiv_H$. \hfill \square
In [9], using compact Lie group theory, Lascar and Pillay showed that any bounded hyperimaginary \(e \) is equivalent to a sequence of finitary bounded hyperimaginaries. As a corollary of Proposition 2.4, the result can be directly obtained when \(\text{Aut}_e(\mathcal{M}) \) is a normal subgroup of \(\text{Aut}(\mathcal{M}) \). (This is observed by Casanovas and Potier [2].)

Corollary 2.5. Let \(e = c_F \) with real \(c \) be a hyperimaginary bounded over \(A \). Assume additionally \(\text{Aut}_{eA}(\mathcal{M}) \triangleleft \text{Aut}_A(\mathcal{M}) \). Then there are finitary hyperimaginaries \(e_i \) \((i \in I) \) such that \(e \) and \((e_i| i \in I) \) are interdefinable over \(A \).

Proof. In the proof we again omit \(A \). Let \(p(x) = \text{tp}(e) \). We may reset \(F \) as \((p(x) \land p(y) \land F(x,y)) \lor x \equiv y\), so that \(F \) as a whole, a type-definable bounded equivalence relation (over \(A \)). Choose a model \(M \) containing \(c \). Note that \(F \) type-defines a bounded equivalence relation on \(M \). Moreover \(\text{Aut}_e(\mathcal{M}) = \{ f \in \text{Aut}(\mathcal{M}) : |F(f(c),c)| = 1 \} \). Hence \(\pi(\text{Aut}_e(\mathcal{M})) \) is a closed subgroup of \(\text{Gal}_L \). By the assumption it is normal as well. Hence our corollary follows from 2.4(2).

Corollary 2.6.

1. For real \(x, y, x \equiv_K^P y \) is the finest bounded type-definable equivalence relation over \(A \). Precisely, for real \(u_i \) \((i = 0,1) \) the following are equivalent.
 (a) \(u_0 \equiv_A^K u_1 \) holds.
 (b) \(u_0 \equiv_A u_1 ; \) and \(E'(u_0,u_1) \) holds for any \(\emptyset \)-type-definable equivalence relation \(E' \) such that \(u_0/E' \in \text{bdd}(A) \).
 (c) \(u'_0 \equiv_K u'_1 \) for each corresponding finite subtuple \(u'_i \) of \(u_i \).

2. \(\text{Aut}_{K\text{P}}(\mathcal{M}, A) \)
 \[= \{ f \in \text{Aut}(\mathcal{M}, A)|f \text{ stabilizes all the bounded A-type-definable equivalence classes} \} \]
 \[= \{ f \in \text{Aut}(\mathcal{M}, A)|f \text{ stabilizes all the bounded A-type-definable equivalence classes of finite arities}. \} \]

3. The following are equivalent.
 (a) \(a \equiv_K^P b \) where \(a = u_F, b = v_F \) with real \(u, v \).
 (b) \(F_{A}^{K\text{P}}(u,v) \) holds where
 \[F_{A}^{K\text{P}}(x,y) \equiv \exists z' (z \equiv_A^K z' \land F(z,x) \land F(z',y)) \equiv \exists z (F(z,y) \land z \equiv_A^K x), \]
 \((z \equiv_A x \) is of course equality of KP-types over \(A \) of real tuples). \(F_{A}^{K\text{P}}(x,y) \) is a bounded type-definable equivalence relation over \(A \) coarser than \(F \), and is the finest among those.

(c) \(a \equiv_{\text{bdd}(A)} b \).
Proof. (1)(a)\iff(b) This comes from the argument in the proof of 2.3(1). Note that for a type $\Psi(x, M)$ type-defining $\nu^{-1}(\{\id\})$, $\Psi(x, y)$ must be the finest bounded type-definable equivalence relation on $\text{tp}(M/A)$.

The equivalence of (1)(c) to others, and (2) are due to 2.4.

(3)(a)\iff(b) Again this is from the argument in the proof of 2.3(1). Note that if $u' \equiv^K_A v'$ and $F(u, u'), F(v, v')$ with real u', v' so that there is $f \in \text{Aut}_{\text{KP}}(\mathcal{M}, A)$ with $v' = f(u')$, then $f(u) \equiv^K_A u$ and $F(f(u), v)$ holds. Hence one can easily verify that Ψ_p there with $H = \text{Aut}_{\text{KP}}(\mathcal{M}, A)$ is equivalent to F_A^KP above on $p(x) = \text{tp}(a/A)$. Note also that F_A^KP is coarser than both \equiv^s and F. It remains to show F_A^KP is the finest one as stated. There clearly is a finest one; let it be F'. If $F_A^\text{KP}(u', v')$ holds, then there is u'' such that $F(u', u'') \equiv^K A v'$. Hence $F'(u', u'')$ and $F'(u', v')$; so $F'(u', v')$ must hold.

(c)\Rightarrow(b) Obvious. Note only that due to (1)(b), u/ \equiv^K_A is equivalent over A to a hyperimaginary.

(b)\Rightarrow(c) Assume (b). Let $a_0 \in \text{bdd}(A)$. By compactness it suffices to show $c_0 \equiv_{a_0} c_1$. Suppose $\{a_i | i \in I\}$ is the set of all A-conjugates of a_0. Write $p(x, a_0) = p(x_F, a_0) = \text{tp}(c_0/Aa_0)$ and $p(x, a_i)$ is the conjugate of $p(x, a_0)$ over A. Now there is a maximal subset $J \subseteq I$ containing 0 such that $\{p(x, a_i) | i \in J\}$ is realized by c_0. Put $a_J = (a_i | i \in J)$, and let $p'(xz) = \text{tp}(c_0a_J/A)$; $q(z) = \text{tp}(a_J/A)$. Consider

$$
\bar{E}(x, y) \equiv \exists z(p'(x, z) \land p'(y, z) \land q(z)) \lor x_F \equiv_A y_F.
$$

Due to the maximality of J, \bar{E} is an A-type-definable equivalence relation, bounded, and coarser than F. Thus by (b), $\bar{E}(c_0, c_1)$ holds. Note that $c_0 \models \bigwedge_{i \in J} p(x, a_i)$, so $c_1 \models p(x, a_0)$, and $c_0 \equiv_{Aa_0} c_1$ as desired. \hfill \square

Proposition 2.7. The following are equivalent.

1. T is G-compact over A.
2. $\text{Autf}(\mathcal{M}, A)$ is closed in $\text{Aut}_A(\mathcal{M})$, and for each finite arity, $x \equiv^l_A y$ is type-definable over A.
3. For any arity, $x \equiv^l_A y$ iff $x \equiv^K_A y$.
4. For any arity, $x \equiv^l_A y$ is type-definable.
5. For any F, $x_F \equiv^l_A y_F$ iff $x_F \equiv^K_A y_F$.

Proof. (1)\Rightarrow(2),(3) By 2.3, 2.6.

(2)\Rightarrow(1) Let $f \in \text{Aut}_{\text{KP}}(\mathcal{M})$. Then by (2) and 2.6, f fixes all \equiv^l-classes of finite arities. Then since $\text{Autf}(\mathcal{M})$ is closed, from 2.2(3), $f \in \text{Autf}(\mathcal{M})$.

(3)\Rightarrow(1) Let $f \in \text{Aut}_{\text{KP}}(\mathcal{M})$. Due to (3), for a model M, we have $M \equiv^K_A f(M)$, and there is $g \in \text{Aut}(\mathcal{M})$ such that $f(M) = g(M)$. Thus by 1.4(1), $f \in \text{Aut}(\mathcal{M})$.

(3)\iff(4), (1)\Rightarrow(5)\Rightarrow(3) Clear. \hfill \square
THE LASCAR GROUP, AND THE STRONG TYPES OF HYPERIMAGINARIES

As is well-known, any simple theory T is G-compact over an arbitrary hyperimaginary.

3. STRONG TYPES OF HYPERIMAGINARIES

Now we talk about strong types in the hyperimaginary context which is somewhat more subtle, even the definition, than in the real case. Recall that a finite equivalence relation means an equivalence relation having finitely many classes.

Definition 3.1. We say two hyperimaginaries a, b have the same strong or Shelah type over A, written $a \equiv^s_A b$ or $\text{stp}(a/A) = \text{stp}(b/A)$, if $E_{\text{Aut}^s(M,A)}(a,b)$ holds.

Proposition 3.2.

1. $\text{Gal}^0_L(T,A)$ is the intersection of all closed (normal) subgroups of $\text{Gal}_L(T,A)$ having finite index.
2. $\text{Aut}^s(M,A) = \{ f \in \text{Aut}_A(M) | f \text{ stabilizes all strong types over } A \text{ of finite arities} \}$.

Proof. (1) We recall 2.2(1). Clearly $\text{Gal}^0_L(T,A)$ is contained in any closed subgroup of $\text{Gal}_L(T,A)$ of finite index. Moreover Gal_S is a profinite group. In a profinite group, the identity is the intersection of all normal closed subgroups of finite index. Hence (1) follows.

(2) follows from 2.2(3), 2.3(2).

Due to Lemma 2.3, $x \equiv^s_A y$ is bounded type-definable over A. We have a more precise collection of formulas type-defining it.

Proposition 3.3. Let u, v be real tuples. The following are equivalent.

1. $u \equiv_A v$; and for any \emptyset-definable equivalence relation E, if $u/E \in \text{acl}(A)$, then $E(u,v)$ holds.
2. $u \equiv^s_A v$.
3. For any A-type-definable equivalence relation E, if u/E has finitely many conjugates over A, then $E(u,v)$ holds.
4. $u \equiv_{\text{acl}(A)} v$.
5. $u \equiv_{\text{acl}^n(A)} v$.
6. $u'_0 \equiv^s_A u'_1$ for each corresponding finite subtuple u'_i of c_i ($i = 0, 1$).

Proof. (1)\Rightarrow(2) By 3.2(1), $\text{Gal}^0_L(T,A) = \bigcap_i H_i$ where H_i is a closed normal subgroup of $\text{Gal}_L(T,A)$ having finite index, so H_i is open as well. Due to the similar argument as in the proof of 2.3(1) there is a formula $F_i(x',y')$ over \emptyset defining an equivalence relation on $\text{tp}(u)$ hence on $M^{[u]}$ by compactness, such that $u/F_i \in \text{acl}(A)$. Since H_i is normal it again follows that on $p(x) = \text{tp}(u/A)$, $F_i(x',y')$ defines $E_{H_i}(x,y)$,
in particular \(p(x) \models F_i(x', u') \iff E_H_i(x, u) \) (the corresponding finite \(u' \subseteq u \)). Therefore (1) \(\Rightarrow \) (2) follows.

(2) \(\Rightarrow \) (3) Let \(E(x, y) \) type-define an equivalence relation over \(A \) such that \(e = u/E \in \text{acl}(A) \). Then \(\text{Aut}_{eA}(\mathcal{M}) \) is a subgroup of \(\text{Aut}_A(\mathcal{M}) \) containing \(\text{Aut}_f(\mathcal{M}) \). Now \(E(x, u) \) clearly defines \(E_{\text{Aut}_{eA}(\mathcal{M})}(x, u) \) on \(\text{tp}(u/A) \). Hence \(\pi(\text{Aut}_{eA}(\mathcal{M})) \) is closed (may not be normal) and it has finite index in \(\text{Gal}_L^A(T, A) \) as automorphisms in a coset send \(e \) to a different \(E \)-class. Therefore \(\text{Gal}_L^A(T, A) \subseteq \pi(\text{Aut}_{eA}(\mathcal{M})) \), and (2) \(\Rightarrow \) (3) follows.

(3) \(\Rightarrow \) (1); and (4) \(\Rightarrow \) (5) \(\Rightarrow \) (1) Obvious.

(3) \(\Rightarrow \) (4) The proof is the same as that of Corollary 2.6(3)(b) \(\Rightarrow \) (c).

This time there \(J \subseteq I \) are finite, and \(q \) is algebraic.

(1) \(\Leftrightarrow \) (6) follows by compactness.

\[\text{Corollary 3.4. } \text{acl}(A) \text{ and acl}^{eq}(A) \text{ are interdefinable.} \]

\[\text{Proof.} \text{ Let } u/E \in \text{acl}(A) \text{ (} u \text{ real).} \text{ It suffices to show } u/E \text{ is definable over acl}^{eq}(A). \text{ Due to 3.3, } u_E \in \text{dcl}(u/\equiv) \text{ and } u/\equiv \text{ is definable over acl}^{eq}(A). \] \]

\[\text{Example 3.5. We give a couple of examples related to Proposition 3.3.} \text{ In (1) that } u \equiv_A v \text{ is essential. Let } \mathcal{L} = \{=\}, \text{ and let } u \neq v \text{ be singletons in the infinite } \mathcal{M}. \text{ By quantifier elimination, the 2nd clause of (1) holds with } A = v, \text{ but } u \neq v \text{ much less } u \equiv_A v. \]

\[\text{Also if } A \text{ is real as well then } u \equiv_A v \text{ iff for any } A\text{-definable finite equivalence relation } E, E(u, v) \text{ holds.} \text{ This no longer holds in hyperimaginary context.} \text{ Even the right hand side need not imply } u \equiv_A v. \text{ The difference comes from that in real context any formula in tp}(u/v) \text{ is } v\text{-invariant, but not in general if } v \text{ is a hyperimaginary: Consider a typical example where Ltp} \neq \text{ stp.} \text{ That is a model } (C; \{U_n(x, y)\}_{0<n<\omega}) \text{ where } C \text{ is the unit circle, and } U_n(a, b) \text{ holds for } a, b \in C \text{ iff the length of the shorter arc from } a \text{ to } b \text{ is } \leq n^{-1}. \text{ Let } F \text{ be an equivalence relation on } C \text{ type-defined by } \{U_n(x, y)\}_{0<n<\omega}. \text{ Choose } u, v \in C \text{ such that } u_F \neq v_F. \text{ Then for any } v_F\text{-invariant finite definable equivalence relation } E \text{ (there almost no such except trivial one), } E(u, v) \text{ holds. But not even } u \equiv_{v_F} v \text{ holds.} \]

\[\text{In the same manner the properties of strong types of hyperimaginaries follow.} \]

\[\text{Proposition 3.6. Let } a = u_F, b = v_F \text{ with real } u, v \text{ be } F\text{-hyperimaginaries.} \text{ The following are equivalent.} \]

\[(1) a \equiv_A b. \]
THE LASCAR GROUP, AND THE STRONG TYPES OF HYPERIMAGINARIES

(2) \(F^*_A(u, v) \) holds where \(F^*_A(x, y) \) is a bounded type-definable equivalence relation over \(A \) coarser than \(F \) such that

\[
F^*_A(x, y) \equiv \exists z z' (z \equiv_A^s z' \land F(z, x) \land F(z', y)) \equiv \exists z (F(z, y) \land z \equiv_A^s x),
\]

(3) \(a \equiv acl(A) b. \)

Proof. (1)⇔(2) By the similar reason as in the proof of 2.6(3)(a)⇔(b).

(1)⇔(3) comes from 3.3.

Proposition 3.7. The following are equivalent.

(1) \(\operatorname{Autf}_{KP}(M, A) = \operatorname{Autf}_S(M, A) \).
(2) \(\operatorname{Gal}_{KP}(T, A) \) is compact Hausdorff and totally disconnected.
(3) \(\equiv_{KP}^A \) is equivalent to \(\equiv_A^s \) for any arity.
(4) \(\equiv_{KP}^A \) is equivalent to \(\equiv_A^s \) for finite arities.
(5) \(\equiv_{KP}^A \) is equivalent to \(\equiv_A^s \) for any hyperimaginary variables.
(6) \(acl(A) \) and \(bdd(A) \) are interdefinable.

In Example 3.5, \(\operatorname{Autf}_{KP} \neq \operatorname{Autf}_S \). Some non G-compact examples (so \(\operatorname{Autf} \neq \operatorname{Autf}_{KP} \)) are constructed in [1]. In an example \(\equiv^L \) is different from \(\equiv_{KP}^A \) for a finite tuple; while they can be equal for all finite arities in another non G-compact example. In [10], given any compact Hausdorff topological group \(G \) a corresponding theory \(T_G \) is constructed so that \(\operatorname{Gal}_{L}(T_G) = G \).

That ‘\(Ltp \equiv stp \) in real (hyperimaginary, resp.) context’ means for any tuple \(c \) and a set \(A \) both real (hyperimaginaries, resp.), it holds that \(Ltp(c/A) \equiv stp(c/A) \).

Proposition 3.8. Assume \(T \) is simple. Then \(Ltp \equiv stp \) in real context implies that in hyperimaginary context. (In particular both low theories and supersimple theories have \(Ltp \equiv stp \) in hyperimaginary context.)

Proof. Assume \(Ltp \equiv stp \) in real context. Let \(u_E \) be a hyperimaginary and let \(v, v' \) be real. It suffices to show \(v \equiv_{u_E}^L v' \) implies \(v \equiv_{u_E}^L v' \).

Choose a model \(M \) containing \(u \). Now \(E \) clearly type-defines an equivalence relation on \(M \) as well, and \(u/E \) and \(M/E \) are interdefinable. Hence there is no harm to suppose that \(u \) is some enumeration of the model. Now let a hyperimaginary \(e := \operatorname{Cb}(u/u_E) \), and let \(F(x, y) \) be \(E(x, y) \land x \equiv^L y \). Then \(u_F \) is hyperdefined by \(x \equiv^L_{u_E} u \). As known \(u_F = \operatorname{Cb}(u/u_E) \): Since \(F \) is finer than \(E \), clearly \(u_E \in \operatorname{dcl}(u_F) \).

Thus \(\operatorname{tp}(u/u_F) \) is a Lascar type, and \(e \in \operatorname{dcl}(u_F) \). Conversely, note now \(u \downarrow_{u_E} u_F \). Since \(u_E \in \operatorname{dcl}(u) \), we have \(u_E \in \operatorname{bdd}(e) \), so \(u_F \in \operatorname{bdd}(e) \) too. Then \(\operatorname{tp}(u/e) \equiv \operatorname{tp}(u/\operatorname{bdd}(e)) \models \operatorname{tp}(u/u_F) \models F(x, u) \). Therefore \(u_F \in \operatorname{dcl}(e) \). So we can put \(e = u_F \).
We claim that $v \equiv_{e} v'$ implies $v \equiv_{L} v'$: Suppose that $v \equiv_{e} v'$. We can clearly assume $u \perp_{e} v$. Take v'' such that $v'' \equiv_{e} v'$ and $v'' \perp_{e} v$. Now there is u' such that $u'v'' \equiv_{e} uv$. Hence by type-amalgamation there is $u'' \models \tp(u/ev) \cup \tp(u'/ev'')$. Then $u''v'' \equiv u''v$, and as $u''(\supset e)$ is a model, $v \equiv_{L} v''$ so $v \equiv_{L} v'$, as desired.

By the claim and 3.7, $\bdd(u_{E}) = \bdd(u_{F}) = \acl(u_{F})$. Moreover by the definition of F and our assumption, u_{F} is definable over $\acl(u_{E})$. Hence $\bdd(u_{E}) = \acl(u_{F})$, and by 3.7 again, $\Ltp \equiv \stp$ over u_{E}, as wanted.

Question Is Proposition 3.8 true for all T?

The following is a comment given by an anonymous referee. We express our thanks for that: Another approach to defining the strong type over a hyperminaginary would be to consider the classical theory as a theory in continuous logic with the discrete metric. In this case, there is no distinction between hyperimaginaries and imaginaries and one could rework material on the Lascar group in this context.

References

Department of Mathematics, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea

E-mail address: bkim@yonsei.ac.kr