Geometric Simplicity Theory

Byunghan Kim

ALC 10

Dept. Math. Yonsei University
http://math.yonsei.ac.kr/bkim
September 1-6, 2008
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Group configuration</td>
</tr>
<tr>
<td>2. Generalized amalgamation</td>
</tr>
<tr>
<td>3. 1-based groups</td>
</tr>
<tr>
<td>4. Structure theorem</td>
</tr>
</tbody>
</table>
Geometric Simplicity Theory

Byunghan Kim

ALC 10

Dept. Math. Yonsei University
http://math.yonsei.ac.kr/bkim

September 1-6, 2008
Again fix a solution set D of a strong type of rank 1. Recall that if D is ω-categorical non-trivial superstable, then Zilber showed it is 1-based and a vector space over a finite field having the same geometry can definably be recovered. Later Hrushovski extended the result.

Fact

If D is 1-based non-trivial stable, then there is a type-definable group $(G, +)$ such that $(V = G/G_0, +)$ forms a vector space over a division ring of the definable endomorphisms of V. Moreover there is linear independence.
To get the group, the group configuration theorem is used.

Definition

By a **group configuration** we mean a 6-tuple $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ with a tuple e such that, for $\{i, j, k\} = \{1, 2, 3\}$,

- $f_i \in \text{acl}(f_j, f_k; e)$,
- $x_i \in \text{acl}(f_j, x_k; e)$,
- all other triples from C are independent over e.
To get the group, the group configuration theorem is used.

Definition

By a group configuration we mean a 6-tuple $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ with a tuple e such that, for $\{i, j, k\} = \{1, 2, 3\}$,

- $f_i \in \text{acl}(f_j, f_k; e)$,
- $x_i \in \text{acl}(f_j, x_k; e)$,
- all other triples from C are independent over e.

![group configuration](attachment:image.png)
If there is $C' = (f'_1, f'_2, f'_3, x'_1, x'_2, x'_3)$ such that
$\text{acl}(f_i e) = \text{acl}(f'_i e), \text{acl}(x_i e) = \text{acl}(x'_i e)$, then C' is also a group configuration over e. In this case, we say C and C' are equivalent over e.
If there is $C' = (f'_1, f'_2, f'_3, x'_1, x'_2, x'_3)$ such that
$\text{acl}(f_i e) = \text{acl}(f'_i e), \text{acl}(x_i e) = \text{acl}(x'_i e)$, then C' is also a group configuration over e. In this case, we say C and C' are equivalent over e.

Definition

We say $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is a group configuration from a type-definable homogeneous space (G, X) if (G, X) and the group action of G on X are all type-definable, and $f_i \in G, x_i \in X$ generic elements with $f_1^{-1}f_2 = f_3, x_2 = f_3x_1, x_3 = f_2x_1$.
If there is $C' = (f'_1, f'_2, f'_3, x'_1, x'_2, x'_3)$ such that $\text{acl}(f_i e) = \text{acl}(f'_i e), \text{acl}(x_i e) = \text{acl}(x'_i e)$, then C' is also a group configuration over e. In this case, we say C and C' are equivalent over e.

Definition

We say $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is a group configuration from a type-definable homogeneous space (G, X) if (G, X) and the group action of G on X are all type-definable, and $f_i \in G, x_i \in X$ generic elements with $f_1^{-1}f_2 = f_3, x_2 = f_3x_1, x_3 = f_2x_1$.
The group configuration theorem

(Hrushovski) Assume T stable. A group configuration $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is given. Then it is equivalent to some group configuration from a type-definable homogeneous space (G, X) over $e(\downarrow C)$.

ω-categoricity or stationarity is strongly used.

What can we say in the context of simple theories.
We may additionally assume T has Q.E.
Let C_T be a category of the algebraically closed substructures of M. Recall that any poset is a category.
For $n \in \omega$, write $\mathcal{P}(n)^- := \mathcal{P}(n) - \{n\}$.
We may additionally assume T has Q.E. Let C_T be a category of the algebraically closed substructures of M. Recall that any poset is a category. For $n \in \omega$, write $\mathcal{P}(n)^- := \mathcal{P}(n) - \{n\}$.

Definition

- A functor $a : W(\subseteq \mathcal{P}(n)) \to C_T$ is said to be independence preserving (i.p.) if
 1. for any $w_0, w_1 \subseteq w \in W$, $a_{w_0} \downarrow_{a_{w_0} \cap w_1} a_{w_1}$ holds within a_w;
 2. for $w \in W$, $a_w = acl(\bigcup \{a_i \mid i \in w\})$.

- We say T has n-amalgamation if any i.p. functor $a : \mathcal{P}(n)^- \to C_T$ can be extended to i.p. $\hat{a} : \mathcal{P}(n) \to C_T$.

3-amalgamation is type-amalgamation (the Independence Theorem). Hence any simple T has 3-amalgamation.
3-amalgamation
4-amalgamation
Let \(\{A_0, A_1, A_2\} \) be independent over \(A(\subseteq A_i = \text{acl}(A_i)) \).
For \(\{i, j, k\} = \{0, 1, 2\} \), let \(c_i \equiv_{A_j} c_k \) and \(c_i \downarrow_A A_j A_k \).
Then there is \(c \equiv_{A_j A_k} c_i \) such that \(c \downarrow_A A_0 A_1 A_2 \).
Let \(\{A_0, A_1, A_2\} \) be independent over \(A(\subseteq A_i = acl(A_i)) \).
For \(\{i, j, k\} = \{0, 1, 2\} \), let \(c_i \equiv_{A_j} c_k \) and \(c_i \downarrow_A A_j A_k \).
Then there is \(c \equiv_{A_j A_k} c_i \) such that \(c \downarrow_A A_0 A_1 A_2 \).

The above candidate for the definition of 4-amalgamation does not work!, although it looks like a very natural one for higher dimensional IT.
Let \(\{ A_0, A_1, A_2 \} \) be independent over \(A(\subseteq A_i = acl(A_i)) \).
For \(\{ i, j, k \} = \{ 0, 1, 2 \} \), let \(c_i \equiv_{A_j} c_k \) and \(c_i \upharpoonright A_j A_k \).
Then there is \(c \equiv_{A_j A_k} c_i \) such that \(c \upharpoonright A A_0 A_1 A_2 \).

The above candidate for the definition of 4-amalgamation does not work!, although it looks like a very natural one for higher dimensional IT.

Why

Let \(M \) be the random graph in \(L = \{ R \} \). Choose distinct \(a_i, b_i, d_i \in M \) and imaginary elements \(c_i = \{ b_i, d_i \} \) \((i = 0, 1, 2) \).
We can additionally assume that
\[
R(b_2, a_0) \land R(d_2, a_1) \land \neg R(b_2, a_1) \land \neg R(d_2, a_0)
\]
and
\[
\text{tp}(b_2 d_2; a_0 a_1) = \text{tp}(b_1 d_1; a_0 a_2) = \text{tp}(b_0 d_0; a_1 a_2).
\]
Now it follows that \(\text{Ltp}(c_1/a_0) = \text{Ltp}(c_2/a_0), \text{Ltp}(c_0/a_1) = \text{Ltp}(c_2/a_1) \) and
\(\text{Ltp}(c_0/a_2) = \text{Ltp}(c_1/a_2) \). However
\(\text{Ltp}(c_0/a_1 a_2), \text{Ltp}(c_1/a_0 a_2), \text{Ltp}(c_2/a_0 a_1) \) have no common realization.
Correct definition for 4-amalgamation is then the one defined using functors.

Equivalently: Let \(\{A_0, A_1, A_2\} \) be independent over \(A(\subseteq A_i = \text{acl}(A_i)) \).

For \(\{i,j,k\} = \{0, 1, 2\} \), let \(\text{acl}(c_i A_j) \equiv_{A_j} \text{acl}(c_k A_j) \) and \(c_i \downarrow_A A_j A_k \), where \(\text{acl}(c_i A_j) \) is a subsequence of a fixed sequence \(\text{acl}(c_i A_j A_k) \).

Then there are \(c \) and an enumeration \(\text{acl}(cA_0 A_1 A_2) \) such that \(\text{acl}(cA_j A_k) \equiv_{\text{acl}(A_j A_k)} \text{acl}(c_i A_j A_k) \) and \(c \downarrow_A A_0 A_1 A_2 \).
Theorem

(Ben-Yaacov, Tomasic, Wagner) \(T \) simple. A group configuration \(C = (f_1, f_2, f_3, x_1, x_2, x_3) \) is given. Then it is equivalent to some group configuration from an invariant homogeneous space \((G, X)\) over \(e(\downarrow C)\).
Theorem

(Ben-Yaacov, Tomasic, Wagner) T simple. A group configuration $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is given. Then it is equivalent to some group configuration from an invariant homogeneous space (G, X) over $e(\downarrow C)$.

Theorem

(de Piro, K, J. Millar: JML '07) Assume T simple having 4-amalgamation. A group configuration $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is given. Then there is a type-definable group G having generics equivalent to f_i.
Corollary

T-1-based nontrivial having 4-amalgamation. Then there is a type-definable group $(G, +)$ such that $(V = G/G_0, +)$ forms a vector space over a division ring of the type-definable endomorphisms of V, and \downarrow is linear independence there.
Corollary

Let T be 1-based nontrivial having 4-amalgamation. Then there is a type-definable group $(G, +)$ such that $(V = G/G_0, +)$ forms a vector space over a division ring of the type-definable endomorphisms of V, and \downarrow is linear independence there.

The group configuration theorem

(K) Assume T simple having 4-amalgamation. A group configuration $C = (f_1, f_2, f_3, x_1, x_2, x_3)$ is given. Then it is equivalent to some group configuration from a type-definable homogeneous space (G, X) over $e(\downarrow C)$.
$G = G(x)$ a group type-defined over \emptyset in simple T. There is a smallest \emptyset-type-definable group G^0 having bounded index in G. G^0 must be normal.

Example

Let $G = (G(= \mathbb{F}_2^\omega), +; \langle, \rangle; \mathbb{F}_2)$, where
\[\langle (a_i | i < \omega), (b_i | i < \omega) \rangle := \sum_{i<\omega} a_i b_i \in \mathbb{F}_2.\]
For $A \subseteq V$, $G^0_A = \{g \in G | \langle g, a \rangle = 0 \text{ for all } a \in A\}$.
$G = G(x)$ a group type-defined over \emptyset in simple T. There is a smallest \emptyset-type-definable group G^0 having bounded index in G. G^0 must be normal.

Example

Let $G = (G(= F_2^\omega), +; \langle, \rangle; F_2)$, where
\[
\langle (a_i \mid i < \omega), (b_i \mid i < \omega) \rangle := \sum_{i<\omega} a_i b_i \in F_2.
\]
For $A \subseteq V$, $G^0_A = \{g \in G \mid \langle g, a \rangle = 0 \text{ for all } a \in A\}$.

For the rest, G is 1-based.

Now reset G by G^0. Hence G has no proper \emptyset-type-definable subgroup of bounded index.
Theorem

(Wagner)

- $G' = [G, G]$, the commutator subgroup of G is bounded. Indeed, $G' \leq Z(G)$.
- Hence G is bounded-by-abelian, and $G_0 = G \cap \text{acl}(\emptyset)(\geq G')$ is normal.
Theorem

(Wagner)

- $G' = [G, G]$, the commutator subgroup of G is bounded. Indeed, $G' \leq Z(G)$.
- Hence G is bounded-by-abelian, and $G_0 = G \cap \text{acl}(\emptyset)(\geq G')$ is normal.

Proof: Note that $Z(G)$ need not be type-definable where as $	ilde{Z} = \tilde{Z}(G) := \{g \in G| [G : C_G(g)]$ is bounded } is.

Claim 1) $[\tilde{Z}, \tilde{Z}]$ is bounded, and $\leq Z(G)$: For $g \in \tilde{Z}$,
$|[g, G]| = |[G, g]| = |[G : C_G(g)]|$ is bounded, hence
$[g, G] \subseteq \text{acl}(g)$. Then for $h \downarrow g \in \tilde{Z}$,
$[h, g] \in \text{acl}(g) \cap \text{acl}(h) = \text{acl}(\emptyset)$. For arbitrary $h, g \in \tilde{Z}$, there is
$h_i \downarrow g$ such that $h = h_1.h_2$. The repeated applications yield Claim 1. Moreover for $h \in \tilde{Z}'$, $[G, h] \subseteq \tilde{Z}'$. \therefore $C_G(h) = G$, and
$\tilde{Z}' \subseteq Z(G)$.
Claim 2) \(\tilde{Z}\) has bounded index in \(G\). Hence \(\tilde{Z} = G\): Note that for \(h, g, g' \in G\),

\[h^g = h^{g'} \quad \text{iff} \quad hg'g^{-1} = g'g^{-1}h \]

\[\text{iff} \quad h \in C_G(g'g^{-1}) \quad \text{iff} \quad (h, h^g) = (h, h^{g'}) \in H_g \cap H_{g'};\]

where \(H_g = \{(h, h^g) | h \in G\}\) be a type-definable subgroup of \(G \times G\). It follows \(H_g\) and \(H_{g'}\) are commensurate iff

\([G : C_G(g'.g^{-1})]\) bounded iff \(g'.g^{-1} \in \tilde{Z}(G)\).
Claim 2) \(\tilde{Z}\) has bounded index in \(G\). Hence \(\tilde{Z} = G\): Note that for
\(h, g, g' \in G\),

\[
h^g = h^{g'} \quad \text{iff} \quad hg'g^{-1} = g'g^{-1}h
\]

\[\text{iff} \quad h \in C_G(g'g^{-1}) \quad \text{iff} \quad (h, h^g) = (h, h^{g'}) \in H_g \cap H_{g'};\]

where \(H_g = \{(h, h^g) \mid h \in G\}\) be a type-definable subgroup of
\(G \times G\). It follows \(H_g\) and \(H_{g'}\) are commensurate iff
\([G : C_G(g'.g^{-1})]\) bounded iff \(g'.g^{-1} \in \tilde{Z}(G)\).

Fact

*(1-based) Any type-definable subgroup of \(G\) is commensurate with
one over \(\text{acl}(\emptyset)\).*
Claim 2) \(\tilde{Z} \) has bounded index in \(G \). Hence \(\tilde{Z} = G \): Note that for \(h, g, g' \in G \),

\[
\begin{align*}
 h^g &= h^{g'} \quad \text{iff} \quad hg'g^{-1} = g'g^{-1}h \\
 &\quad \text{iff} \quad h \in C_G(g'g^{-1}) \quad \text{iff} \quad (h, h^g) = (h, h^{g'}) \in H_g \cap H_{g'};
\end{align*}
\]

where \(H_g = \{(h, h^g) | \ h \in G\} \) be a type-definable subgroup of \(G \times G \). It follows \(H_g \) and \(H_{g'} \) are commensurate iff \([G : C_G(g'.g^{-1})] \) bounded iff \(g'.g^{-1} \in \tilde{Z}(G) \).

Fact

(1-based) Any type-definable subgroup of \(G \) is commensurate with one over \(acl(\emptyset) \).

\(\therefore \) Claim 2 follows. \(\square \)
We have shown that G/G_0 is abelian. Additionally assume $SU(G) = 1$.
We have shown that G/G_0 is abelian. Additionally assume $SU(G) = 1$.

Definition

By an *endogeny* of G/G_0, we mean an endomorphism f of G/G_0 such that the graph of f is *type-definably induced* over $acl(\emptyset)$, i.e. there is a type-definable subset S_f over $bdd(\emptyset)$ of $G \times G$ such that

$\{(a + G_0, b + G_0) | (a, b) \in S_f\}$

forms the graph of f.
We have shown that G/G_0 is abelian. Additionally assume $SU(G) = 1$.

Definition

By an *endogeny* of G/G_0, we mean an endomorphism f of G/G_0 such that the graph of f is *type-definably induced* over $acl(\emptyset)$, i.e. there is a type-definable subset S_f over $bdd(\emptyset)$ of $G \times G$ such that

$$\{(a + G_0, b + G_0) | (a, b) \in S_f\}$$

forms the graph of f.

Let $\text{End}(G) = \{f | f$ is an endogeny of $G/G_0\}$. With addition and composition, it is easy to check $\text{End}(G)$ forms a division ring.
Structure Theorem

(Wagner) For $a_0, \ldots, a_n \in G \setminus G_0$, the following are equivalent.

1. $\{a_0, \ldots, a_n\}$ is dependent.
2. $a_i \in acl(\{a_0, \ldots, a_n\} \setminus \{a_i\})$ for some $i \leq n$.
3. There are $f_0, \ldots, f_n \in \text{End}(G)$ not all zero such that $f_0(a_0 + G_0) + \cdots + f_n(a_n + G_0) = 0$ in G/G_0.

Hence $(V, +)$ with $V := G/G_0$ forms a vector space over the division ring $\text{End}(G)$, where $\downarrow = \text{linear independence}$.
Structure Theorem

(Wagner) For $a_0, \ldots, a_n \in G \setminus G_0$, the following are equivalent.

1. $\{a_0, \ldots, a_n\}$ is dependent.
2. $a_i \in acl(\{a_0, \ldots, a_n\} \setminus \{a_i\})$ for some $i \leq n$.
3. There are $f_0, \ldots, f_n \in \text{End}(G)$ not all zero such that

 $$f_0(a_0 + G_0) + \ldots + f_n(a_n + G_0) = 0 \text{ in } G/G_0.$$

Hence $(V, +)$ with $V := G/G_0$ forms a vector space over the division ring $\text{End}(G)$, where $\downarrow = \text{linear independence}.$

Fact

(Wagner) Any strong type in G^n is generic for some coset of a type-definable subgroup of G^n.
Structure Theorem

(Wagner) For $a_0, \ldots, a_n \in G \setminus G_0$, the following are equivalent.

1. $\{a_0, \ldots, a_n\}$ is dependent.
2. $a_i \in \text{acl}(\{a_0, \ldots, a_n\} \setminus \{a_i\})$ for some $i \leq n$.
3. There are $f_0, \ldots, f_n \in \text{End}(G)$ not all zero such that $f_0(a_0 + G_0) + \ldots + f_n(a_n + G_0) = 0$ in G/G_0.

Hence $(V, +)$ with $V := G/G_0$ forms a vector space over the division ring $\text{End}(G)$, where $\downarrow =$linear independence.

Fact

(Wagner) Any strong type in G^n is generic for some coset of a type-definable subgroup of G^n.

(Hrushovski, Pillay) (T stable.) Any type-definable subset of G^n is a finite Boolean combination of cosets of type-definable subgroups of G^n.
Proof Sketch of Structure Theorem: Suffices to show (1) \Rightarrow (3). By Fact, there is $H(\leq G^{n+1})$ a type-definable subgroup over acl(\emptyset) such that stp($a_0, ..., a_n$) is generic for some $H + \bar{h}$.

For $i < n$, let

$$F_i := \{(x_i, x_n) \in G \times G | (0, ..., 0, x_i, 0, ..., 0, x_n) \in H\}.$$

Then one can show

$$f_i := \{(a + G_0, b + G_0) | (a, b) \in F_i\}$$

is the graph of a nonzero endogeny of G/G_0, and

$$f_0(a_0 + G_0) + ... + f_{n-1}(a_{n-1} + G_0) = -a_n + G_0.$$