Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumerate several of their properties, prove Gödel’s β-Function Lemma, and demonstrate its first applications to coding techniques.

Definition. For \(R \subseteq \omega^n \) a relation, \(\chi_R : \omega^n \to \omega \), the characteristic function on \(R \), is given by
\[
\chi_R(\bar{a}) = \begin{cases}
1 & \text{if } \neg R(\bar{a}), \\
0 & \text{if } R(\bar{a}).
\end{cases}
\]

Definition. A function from \(\omega^m \to \omega \) (\(m \geq 0 \)) is called **recursive** (or **computable**) if it is obtained by finitely many applications of the following rules:

R1.
- \(I_i^n : \omega^n \to \omega \), \(1 \leq i \leq n \), defined by \((x_1, \ldots, x_n) \mapsto x_i \) is recursive;
- \(+ : \omega \times \omega \to \omega \) and \(\cdot : \omega \times \omega \to \omega \) are recursive;
- \(\chi_\prec : \omega \times \omega \to \omega \) is recursive.

R2. (Composition) For recursive functions \(G, H_1, \ldots, H_k \) such that \(H_i : \omega^n \to \omega \) and \(G : \omega^k \to \omega \), \(F : \omega^n \to \omega \), defined by \(F(\bar{a}) = G(H_1(\bar{a}), \ldots, H_k(\bar{a})) \).

is **recursive**.

R3. (Minimization) For \(G : \omega^{n+1} \to \omega \) recursive, such that for all \(\bar{a} \in \omega^n \) there exists some \(x \in \omega \) such that \(G(\bar{a}, x) = 0 \), \(F : \omega^n \to \omega \), defined by \(F(\bar{a}) = \mu x (G(\bar{a}, x) = 0) \)

is **recursive**. (Recall that \(\mu x P(x) \) for a relation \(P \) is the minimal \(x \in \omega \) such that \(x \in P \) obtains.)

Definition. \(R(\subseteq \omega^k) \) is called **recursive**, or **computable** (\(R \) is a recursive relation) if \(\chi_R \) is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E]. Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.
Properties of Recursive Functions and Relations:

P0. Assume $\sigma : \{1, \ldots, k\} \to \{1, \ldots, n\}$ is given. If $G : \omega^k \to \omega$ is recursive, then $F : \omega^n \to \omega$ defined by, for $a = (a_1, \ldots, a_n)$,

$$F(\overline{a}) = G(a_{\sigma(1)}, \ldots, a_{\sigma(k)}) = G(I^\sigma_n(\overline{a}), \ldots, I^\sigma_n(\overline{a})),$$

is recursive. Similarly, if $P(x_1, \ldots, x_k)$ is recursive, then so is

$$R(x_1, \ldots, x_n) \equiv P(x_{\sigma(1)}, \ldots, x_{\sigma(k)}).$$

Proof. $\chi_P(\overline{a}) = \chi_Q(H_1(\overline{a}), \ldots, H_k(\overline{a}))$ is a recursive function by R2.

P1. For $Q \subseteq \omega^k$ a recursive relation, and $H_1, \ldots, H_k : \omega^n \to \omega$ recursive functions,

$$P = \{\overline{a} \in \omega^n \mid Q(H_1(\overline{a}), \ldots, H_k(\overline{a}))\}$$

is a recursive relation.

Proof. $F(\overline{a}) = \mu x P(\overline{a}, x)$ is recursive by R3.

P2. For $P \subseteq \omega^{m+1}$, a recursive relation such that for all $\overline{a} \in \omega^n$ there exists some $x \in \omega$ such that $P(\overline{a}, x)$, then $F : \omega^n \to \omega$, defined by

$$F(\overline{a}) = \mu x P(\overline{a}, x)$$

is recursive.

Proof. $F(\overline{a}) = \mu x (\chi_P(\overline{a}, x) = 0)$, so we may apply R3.

P3. Constant functions, $C_{n,k} : \omega^n \to \omega$ such that $C_{n,k}(\overline{a}) = k$, are recursive. (Hence for recursive $F : \omega^{m+n} \to \omega$ or $P \subseteq \omega^{m+n}$, and $\overline{b} \in \omega^n$, both the map $(x_1, \ldots, x_m) \mapsto F(x_1, \ldots, x_m; \overline{b})$ and $P(x_1, \ldots, x_m; \overline{b}) \subseteq \omega^n$ are recursive.)

Proof. By induction:

$$C_{n,0}(\overline{a}) = \mu x (I_{n+1}^n(\overline{a}, x) = 0)$$

are recursive by R3 and P2, respectively.

P4. For $Q, P \subseteq \omega^n$, recursive relations, $\neg P$, $P \lor Q$, and $P \land Q$ are recursive.

Proof. We have that

$$\chi_{\neg P}(\overline{a}) = \chi_0(0, \chi_P(\overline{a})),\quad \chi_{P \lor Q}(\overline{a}) = \chi_P(\overline{a}) \land \chi_Q(\overline{a}),\quad P \land Q = \neg (\neg P \lor \neg Q).$$

P5. The predicates $=, \leq, >,$ and \geq are recursive. (Hence each finite set is recursive.)

Proof. For $a, b \in \omega$,

$$a = b \text{ iff } \neg(a < b) \land \neg(b < a),$$

$$a \leq b \text{ iff } \neg(a < b),$$

$$a > b \text{ iff } (a \geq b) \land \neg(a = b), \text{ and}$$

$$a \leq b \text{ iff } \neg(a > b),$$
hence these are recursive by P4.

Notation. We write, for $a \in \omega^n$, $f : \omega^n \to \omega$ a function and $P \subseteq \omega^{n+1}$ a relation,

$$\mu x < f(\pi) P(x, \bar{b}) \equiv \mu x(P(x, \bar{b}) \vee x = f(\pi)).$$

In particular, $\mu x < f(\pi) P(x, \bar{b})$ is the smallest integer less than $f(\pi)$ which satisfies P, if such exists, or $f(\pi)$, otherwise.

We also write

$$\exists x < f(\pi) P(x) \equiv (\mu x < f(\pi) P(x)) < f(\pi),$$

and

$$\forall x < f(\pi) P(x) \equiv \neg(\exists x < f(\pi) (\neg P(x))).$$

The first is clearly satisfied if some $x < f(\pi)$ satisfies $P(x)$, while the second is satisfied if all $x < f(\pi)$ satisfy $P(x)$.

P6. For $P \subseteq \omega^{n+1}$ a recursive relation, $F : \omega^{n+1} \to \omega$, defined by

$$F(a, \bar{b}) = \mu x < a P(x, \bar{b}),$$

is recursive.

Proof. $F(a, \bar{b}) = \mu x(P(x, \bar{b}) \vee x = a)$, and thus F is recursive by P2, since for all \bar{b}, a satisfies $P(x, \bar{b}) \vee x = a$.

P7. For $R \subseteq \omega^{n+1}$ a recursive relation, $P, Q \subseteq \omega^{n+1}$ such that

$$P(a, \bar{b}) \equiv \exists x < a R(x, \bar{b}); \quad Q(a, \bar{b}) \equiv \forall x < a R(x, \bar{b})$$

are recursive. (Hence, with P1, it follows both

$$\text{Div}(y, z)(\equiv y|z) = \exists x < z + 1(z = x \cdot y),$$

and PN, the set of all prime numbers, are recursive.)

Proof. Note that P is defined by composition of recursive functions and predicates, hence recursive by P1, and Q is defined by composition of recursive functions, recursive predicates, and negation, hence recursive by P1 and P4.

P8. $\cdot : \omega \times \omega \to \omega$, defined by

$$a \cdot b = \begin{cases} a - b & \text{if } a \geq b, \\ 0 & \text{otherwise,} \end{cases}$$

is recursive.

Proof. Note that

$$a \cdot b = \mu x(b + x = a \vee a < b).$$
P9. If $G_1, \ldots, G_k : \omega^n \to \omega$ are recursive functions, and $R_1, \ldots, R_k \subseteq \omega^n$ are recursive relations partitioning ω^n (i.e., for each $\pi \in \omega^n$, there exists a unique i such that $R_i(\pi)$), then $F : \omega^n \to \omega$, defined by

$$F(\pi) = \begin{cases} G_1(\pi) & \text{if } R_1(\pi), \\ G_2(\pi) & \text{if } R_2(\pi), \\ \vdots & \vdots \\ G_k(\pi) & \text{if } R_k(\pi), \end{cases}$$

is recursive.

Proof. Note that

$$F = G_1 \chi_{\neg R_1} + \cdots + G_k \chi_{\neg R_k}.$$

P10. If $Q_1, \ldots, Q_k \subseteq \omega^n$ are recursive relations, and $R_1, \ldots, R_k \subseteq \omega^n$ are recursive relations partitioning ω^n, then $P \subseteq \omega^n$, defined by

$$P(\pi) \text{ iff } \begin{cases} Q_1(\pi) & \text{if } R_1(\pi), \\ \vdots & \vdots \\ Q_k(\pi) & \text{if } R_k(\pi), \end{cases}$$

is recursive.

Proof. Note that

$$\chi_P(\pi) = \begin{cases} \chi_{Q_1}(\pi) & \text{if } R_1(\pi), \\ \vdots & \vdots \\ \chi_{Q_k}(\pi) & \text{if } R_k(\pi), \end{cases}$$

is recursive by P9.

Definition. A relation $P \subseteq \omega^n$ is recursively enumerable (r.e.) if there exists some recursive relation $Q \subseteq \omega^{n+1}$ such that

$$P(\pi) \text{ iff } \exists xQ(\pi, x).$$

Remark If a relation $R \subseteq \omega^n$ is recursive, then it is recursively enumerable, since $R(\pi) \text{ iff } \exists x(R(\pi) \wedge x = x).$

Negation Theorem. A relation $R \subseteq \omega^n$ is recursive if and only if R and $\neg R$ are recursively enumerable.

Proof. If R is recursive, then $\neg R$ is recursive. Hence by above remark, both are r.e.

Now, let P and Q be recursive relations such that for $\pi \in \omega^n$, $R(\pi) \text{ iff } \exists xQ(\pi, x)$ and $\neg R(\pi) \text{ iff } \exists xP(\pi, x)$.

Define $F : \omega^n \to \omega$ by

$$F(\pi) = \mu x(Q(\pi, x) \lor P(\pi, x)),$$

recursive by P2, since either $R(\pi)$ or $\neg R(\pi)$ must hold.

We show that

$$R(\pi) \text{ iff } Q(\pi, F(\pi)).$$
In particular, $Q(\overline{\alpha}, F(\overline{\alpha}))$ implies there exists x (namely, $F(\overline{\alpha})$) such that $Q(\overline{\alpha}, x)$, thus $R(\overline{\alpha})$ holds. Further, if $\neg Q(\overline{\alpha}, F(\overline{\alpha}))$, then $P(\overline{\alpha}, F(\overline{\alpha}))$, since $F(\overline{\alpha})$ satisfies $Q(\overline{\alpha}, x) \lor P(\overline{\alpha}, x)$. Thus $\neg R(\overline{\alpha})$ holds.

The β-Function Lemma.

β-Function Lemma (Gödel). There is a recursive function $\beta: \omega^2 \rightarrow \omega$ such that $\beta(a, i) \leq a \cdot i$ for all $a, i \in \omega$, and for any $a_0, a_1, \ldots, a_{n-1} \in \omega$, there is an $a \in \omega$ such that $\beta(a, i) = a_i$ for all $i < n$.

Remark 1. Let $A = \{a_1, \ldots, a_n\} \subseteq \omega \setminus \{0, 1\}$ $(n \geq 2)$ be a set such that any two distinct elements of A are relatively prime. Then given non-empty subset B of A, there is $y \in \omega$ such that for any $a \in A$, $a\mid y$ if $a \in B$. (y is a product of elements in B.)

Lemma 2. If $k|z$ for $z \neq 0$, then $(1 + (j + k)z, 1 + jz)$ are relatively prime for any $j \in \omega$.

Proof. Note that for p prime, $p|z$ implies that $p|1 + jz$. But if $p|1 + (j + k)z$ and $p|1 + jz$, then $p|kz$, implying $p|k$ or $p|z$, and thus $p|z$, a contradiction.

Lemma 3. $J: \omega^2 \rightarrow \omega$, defined by $J(a, b) = (a + b)^2 + (a + 1)$, is one-to-one.

Proof. If $a + b < a' + b'$, then $J(a, b) = (a + b)^2 + a + 1 \leq (a + b)^2 + 2(a + b) + 1 = (a + b + 1)^2 \leq (a' + b')^2 < J(a', b')$. Thus if $J(a, b) = J(a', b')$, then $a + b = a' + b'$, and

$$0 = J(a', b') - J(a, b) = a' - a,$$

implying that $a = a'$ and $b = b'$, as desired.

Proof of β-Function Lemma. Define

$$\beta(a, i) = \mu x < a \cdot i \ (\exists y < a \ (\exists z < a \ (a = J(y, z) \land \text{Div}(1 + (J(x, i) + 1) \cdot z, y)))).$$

It is clear that β is recursive, and that $\beta(a, i) \leq a \cdot i$.

Given $a_0, \ldots, a_{n-1} \in \omega$, we want to find $a \in \omega$ such that $\beta(a, i) = a_i$ for all $i < n$. Let

$$c = \max_{i<n} \{J(a_i, i) + 1\},$$

and choose $z \in \omega$, nonzero, such that for all $j < c$ nonzero, $j|z$.

By Lemma 2, for all j, l such that $1 \leq j < l \leq c$, $(1 + jz, 1 + lz)$ are relatively prime, since $0 < l - j < c$ implies that $(l - j)|z$. By Remark 1, there exists $y \in \omega$ such that for all $j < c$,

$$1 + (j + 1)z \mid y \iff j = J(a_i, i) \text{ for some } i < n. \quad (*)$$

Let $a = J(y, z)$.

We note the following, for each a_i:

(i) $a_i < y < a$ and $z < a$;

In particular, $y, z < a$ by the definition of J, and that $a_i < y$ by $(*)$.

(ii) $\text{Div}(1 + (J(a_i, i) + 1) \cdot z, y)$;

From $(*)$.

2014-07-21
(iii) For all \(x < a_i, 1 + (J(x, i) + 1)|z|y \):
Since \(J \) is one-to-one, \(x < a_i \) implies \(J(x, i) \neq J(a_i, i) \), and for \(j \neq i, J(x, i) \neq J(a_j, j) \). Thus, by (*) \(x \) does not satisfy the required predicate for \(y \) and \(z \) as chosen above.

Since for any other \(y' \) and \(z' \), \(a = J(y, z) \neq J(y', z') \), we have that \(a_i \) is in fact the minimal integer satisfying the predicate defining \(\beta \), and thus \(\beta(a, i) = a_i \), as desired.

The \(\beta \)-function will be the basis for various systems of coding. Our first use will be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers \(a_1, \ldots, a_n \), is given by
\[
<a_1, \ldots, a_n> = \mu x(\beta(x, 0) = n \land \beta(x, 1) = a_1 \land \cdots \land \beta(x, n) = a_n).
\]

Note that the map \(< > \) is defined on all sequences due to the properties of \(\beta \) proved above. Further, since \(\beta \) is recursive, \(< > \) is recursive, and \(< > \) is one-to-one, since
\[
<a_1, \ldots, a_n> = <b_1, \ldots, b_m>
\]
implies that \(n = m \) and \(a_i = b_i \) for each \(i \). Note, too, that the sequence number of the empty sequence is
\[
< > = \mu x(\beta(x, 0) = 0) = 0.
\]

An important feature of our coding is that we can recover a given sequence from its sequence number:

Definition. For each \(i \in \omega \), we have a function \((\cdot)_i : \omega \to \omega \), given by
\[
(a)_i = \beta(a, i).
\]
Clearly \((\cdot)_i \) is recursive for each \(i \). \((\cdot)_0 \) will be called the length and denoted \(lh \).

As intended, it follows from these definitions that \((a_1 \ldots a_n)_i = a_i \) and \(lh(<a_1 \ldots a_n>) = n \).

Note also that whenever \(a > 0 \), we have \(lh(a) < a \) and \((a)_i < a \).

Definition. The relation \(Seq \subseteq \omega \) is given by
\[
Seq(a) \text{ iff } \forall x < a(lh(x) \neq lh(a) \lor \exists i < lh(a)((x)_{i+1} \neq (a)_{i+1}).
\]

That \(Seq \) is recursive is evident from properties enumerated above. From our definition, it is clear that \(Seq(a) \) if and only if \(a \) is the sequence number for some sequence (in particular, \(a = <(a)_1, \ldots, (a)_{lh(a)}> \)). Note that
\[
\neg Seq(a) \text{ iff } \exists x < a(lh(x) = lh(a) \land \forall i < lh(a)((x)_{i+1} = (a)_{i+1}).
\]

Definition. The initial sequence function \(Init : \omega^2 \to \omega \) is given by
\[
Init(a, i) = \mu x(lh(x) = i \land \forall j < i((x)_{j+1} = (a)_{j+1})).
\]
Again, \(Init \) is evidently recursive. Note that for \(1 \leq i \leq n \),
\[
Init(<a_1, \ldots, a_n>, i) = <a_1, \ldots, a_i>,
\]
as intended.
Definition. The concatenation function $* : \omega^2 \rightarrow \omega$ is given by
\[a * b = \mu x (lh(x) = lh(a) + lh(b))\]
and showing that computation is cumbersome, but possible, for any particular value a.

Properties of Recursive Functions and Relations (continued):

P11. For $G : \omega \times \omega \times \omega^a \rightarrow \omega$ a recursive function, the function $F : \omega \times \omega^a \rightarrow \omega$, given by

$F(a, \overline{b}) = G(\overline{b}, a, \overline{b})$,

is recursive. Because $\overline{F}(a, \overline{b})$ is defined in terms of values $F(x, \overline{b})$, for x strictly smaller than a, this inductive definition of F makes sense.

Proof. Note that

$F(a, \overline{b}) = G(H(a, \overline{b}), a, \overline{b})$

where

$H(a, \overline{b}) = \mu x (Seq(x) \land lh(x) = a \land \forall i < a((x)_{i+1} = G(Init(x, i), i, \overline{b})))$.

According to this definition, $F(0, \overline{b}) = G(\langle\rangle, 0, \overline{b}) = G(0, 0, \overline{b})$,

$F(1, \overline{b}) = G(\langle G(0, 0, \overline{b}) \rangle, 1, \overline{b})$,

and

$F(2, \overline{b}) = G(\langle G(0, 0, \overline{b}), G(\langle G(0, 0, \overline{b}) \rangle, 1, \overline{b}) \rangle, 2, \overline{b})$,

showing that computation is cumbersome, but possible, for any particular value a.

P12. For $G : \omega \times \omega^a \rightarrow \omega$ and $H : \omega \times \omega^a \rightarrow \omega$ recursive functions, $F : \omega \times \omega^a \rightarrow \omega$ defined by

$F(a, \overline{b}) = \begin{cases} F(G(a, \overline{b}), \overline{b}) & \text{if } G(a, \overline{b}) < a, \text{ and} \\ H(a, \overline{b}) & \text{otherwise,} \end{cases}$

is recursive.

Proof. Note that when $G(a, \overline{b}) < a$, we have

$F(G(a, \overline{b}), \overline{b}) = (\overline{F}(a, \overline{b}))_{G(a, \overline{b})+1} = \beta(\overline{F}(a, \overline{b}), G(a, \overline{b}) + 1) = G'(\overline{F}(a, \overline{b}), a, \overline{b})$

with recursive $G'(x, y, z) = \beta(x, G(y, z) + 1)$. Thus F is recursive by P11.
For most purposes, when we define a function F inductively by cases, we must satisfy two requirements to guarantee that our function is well-defined. First, if $F(x, b)$ appears in a defining case involving a, we must show that $x < a$ whenever this case is true. Second, we must show that our base case is not defined in terms of F. In particular, this means that we cannot use F in a defining case which is used to compute $F(0, \beta)$.

P13. Given recursive $G : \omega^n \rightarrow \omega$ and $H : \omega^2 \times \omega^n \rightarrow \omega$, $F : \omega \times \omega^n \rightarrow \omega$ given by

$$F(a, b) = \begin{cases} H(F(a-1, b), a-1, b) & \text{if } a > 0, \\ G(b) & \text{otherwise,} \end{cases}$$

is recursive. (For example, the maps

$$n \mapsto n! = \begin{cases} (n-1)! \cdot n & \text{if } n > 0 \\ 1 & \text{if } n = 0, \end{cases}$$

$$(n, m) \mapsto m^n = \begin{cases} m^{(n-1)} \cdot m & \text{if } n > 0, \\ 1 & \text{if } n = 0, \end{cases}$$

and

$$n \mapsto (n + 1)^{\text{th}} \text{ prime} = \begin{cases} \mu x(x > n^{\text{th}} \text{ prime } \land \text{PN}(x)) & \text{if } n > 0 \\ 2 & \text{if } n = 0 \end{cases}$$

are all recursive.)

Proof. Note that $H(F(a-1, b), a-1, b) = H(\beta(F(a, b), a), a-1, b)$ has the form of P11.

P14. Given recursive relations $Q \subseteq \omega^{n+1}$ and $R \subseteq \omega^n$ and recursive $H : \omega \times \omega^n \rightarrow \omega$ such that $H(a, b) < a$ whenever $Q(a, b)$ holds, the relation $P \subseteq \omega^{n+1}$, given by

$$P(a, b) \iff \begin{cases} P(H(a, b), b) & \text{if } Q(a, b), \\ R(a, b) & \text{otherwise,} \end{cases}$$

is recursive.

Proof. Define $H' : \omega \times \omega^n \rightarrow \omega$ by

$$H'(a, b) = \begin{cases} H(a, b) & \text{if } Q(a, b), \\ a & \text{otherwise.} \end{cases}$$

H' is clearly recursive. Note

$$\chi_P(a, b) = \begin{cases} \chi_P(H'(a, b), b) & \text{if } H'(a, b) < a, \\ \chi_R(a, b) & \text{otherwise.} \end{cases}$$

The following example will prove useful:
Definition. Let $A \subseteq \omega^2$ be given by

$$A(a,c) \iff \text{Seq}(c) \land \text{lh}(c) = a \land \forall i < a((c)_i + 1 = 0 \lor (c)_{i+1} = 1),$$

and let $F : \omega^2 \to \omega$ be given by

$$F(a,i) = \begin{cases}
\mu x (A(a,x)) & \text{if } i = 0, \\
\mu x (F(a,i-1) < x \land A(a,x)) & \text{if } 0 < i < 2^a, \text{ and} \\
0 & \text{otherwise.}
\end{cases}$$

Then the function $bd : \omega \to \omega$ is given by

$$bd(n) = F(n, 2^n - 1).$$

Evidently, A, F, and bd are all recursive. In fact,

$$bd(n) = \max \{ <c_1c_2...c_n> \mid c_i = 0 \text{ or } 1 \}.$$

Step 1: Representability of Recursive Functions in Q

We define Q, a subtheory of the natural numbers, and prove the Representability Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers $L_N = \{+, \cdot, S, <, 0\}$. We specify the theory Q with the following axioms.

Q1. $\forall x \ Sx \neq 0$.
Q2. $\forall x \forall y \ Sx = Sy \rightarrow x = y$.
Q3. $\forall x \ x + 0 = x$.
Q4. $\forall x \forall y \ x + Sy = S(x + y)$.
Q5. $\forall x \ x \cdot 0 = 0$.
Q6. $\forall x \forall y \ x \cdot Sy = x \cdot y + x$.
Q7. $\forall x \ -(x < 0)$.
Q8. $\forall x \forall y \ x < Sy \iff x < y \lor x = y$.
Q9. $\forall x \forall y \ x < y \lor x = y \lor y < x$.

Note that the natural numbers, \mathbb{N}, are a model of the theory Q. If we add to this theory the set of all generalizations of formulas of the form

$$(\varphi_0^x \land \forall x (\varphi \rightarrow \varphi_{Sx}^x)) \rightarrow \varphi,$$

providing the capability for induction, we call this theory Peano Arithmetic, or PA. Thus $Q \subseteq PA$, and $PA \vdash Q$.

Notation. We define, for a natural number n,

$$n \equiv \underbrace{SS...S}_n0.$$

Definition. A function $f : \omega^n \to \omega$ is representable in Q if there exists an L_N-formula $\varphi(x_1, \ldots, x_n, y)$ such that

$$Q \vdash \forall y (\varphi(k_1, \ldots, k_n, y) \iff y = f(k_1, \ldots, k_n))$$

for all $k_1, \ldots, k_n \in \omega$. We say φ represents f in Q.

Definition. A relation $P \subseteq \omega^n$ is **representable** in Q if there exists an \mathcal{L}_N-formula $\varphi(x_1, \ldots, x_n)$ such that for all $k_1, \ldots, k_n \in \omega$,

$$P(k_1, \ldots, k_n) \rightarrow Q \vdash \varphi(k_1, \ldots, k_n)$$

and

$$\neg P(k_1, \ldots, k_n) \rightarrow Q \vdash \neg \varphi(k_1, \ldots, k_n).$$

Again, we say that φ represents P in Q.

To prove the Representability Theorem, we will require the following:

Lemma 1. If $m = n$, then $Q \vdash m = n$, and if $m \neq n$, then $Q \vdash \neg(m = n)$.

Proof. It is enough to demonstrate this for $m > n$. For $n = 0$, our result follows from axiom Q1. Assume, then, that the result holds for $k = n$ and all $l > k$. Then we have that, for a given $m > n + 1$, $Q \vdash m - 1 \neq n$. By axiom Q2 we have, $Q \vdash m - 1 \neq n \rightarrow m \neq n + 1$. Hence we conclude that $Q \vdash m \neq n + 1$, and the result holds for $k = n + 1$, as required.

Lemma 2. $Q \vdash m + n = m + n$.

Proof. For $n = 0$, our result follows from axiom Q3. Assume, then, that the result holds for $k = n$. We must show it holds for $k = n + 1$ as well. But $Q \vdash m + n = m + n$, and we obtain $Q \vdash m + n + 1 = m + n + 1$ by Q4.

Lemma 3. $Q \vdash m \cdot n = m \cdot n$

Proof. For $n = 0$, our result follows from axiom Q5. Assume, then, that the result holds for $k = n$. Then $Q \vdash m \cdot n = mn$. Applying Q6, we have that $Q \vdash m \cdot n + 1 = mn + m$, and applying the previous lemma, we have the result for $k = n + 1$, as required.

Lemma 4. If $m < n$, then $Q \vdash m < n$. Further, if $m \geq n$, we have $Q \vdash \neg(m < n)$.

Proof. For $n = 0$, the result follows from Q7. Assume, then, that the results hold for $k = n$. We show both claims hold for $k = n + 1$ as well.

First, suppose $m < n + 1$. Either $m < n$, and $Q \vdash m < n$ by the induction hypothesis, or $m = n$, and $Q \vdash m = n$ by Lemma 1. In either case, by Q8 and Rule T, we have that $Q \vdash m < n + 1$.

Second, suppose $m \geq n + 1$. Then $m > n$ and by the induction hypothesis, $Q \vdash \neg(m < n)$. By Lemma 1, we also have $Q \vdash \neg(m = n)$. Again applying Q8 and Rule T, we have that $Q \vdash \neg(m < n + 1)$, as desired.

Lemma 5. For any relation $P \subseteq \omega^n$, P is representable in Q if and only if χ_P is representable.

Proof. Assume P is representable and that $\varphi(x_1, \ldots, x_n)$ represents P. Let

$$\psi(\overline{x}, y) \equiv (\varphi(\overline{x}) \land y = 0) \lor (\neg \varphi(\overline{x}) \land y = 1).$$

We claim $\psi(\overline{x}, y)$ represents χ_P:

Suppose $P(k_1, \ldots, k_n)$ holds. Then $Q \vdash \varphi(k_1, \ldots, k_n)$. Now since

$$\varphi(k_1, \ldots, k_n) \rightarrow (y = 0 \iff \psi(k_1, \ldots, k_n, y))$$

is valid in Q by Q9, we conclude that $Q \vdash \psi(\overline{k}, y)$, and hence χ_P is representable. Conversely, if χ_P is representable, then $\psi(\overline{x}, y)$ represents χ_P, which implies $\varphi(\overline{x})$ represents P. Therefore, P is representable.
is a tautology, we have \(Q \vdash y = 0 \leftrightarrow \psi(k_1, \ldots, k_n, y) \), as required. Similarly, if \(\neg P(k_1, \ldots, k_n) \) holds, then \(Q \vdash \neg \varphi(k_1, \ldots, k_n) \), and since
\[
\vdash \neg \varphi(k_1, \ldots, k_n) \rightarrow (y = 1 \leftrightarrow \psi(k_1, \ldots, k_n, y)),
\]
we obtain that \(Q \vdash y = 1 \leftrightarrow \psi(k_1, \ldots, k_n, y) \), as required. Thus, \(\psi(\overline{x}, y) \) represents \(\chi_P \).

Assume now that \(\psi(\overline{x}, y) \) represents \(\chi_P \). Then \(\psi(\overline{x}, 0) \) represents \(P \).

In particular, when \(P(k_1, \ldots, k_n) \) holds, we have
\[
Q \vdash \psi(k_1, \ldots, k_n, y) \leftrightarrow y = 0.
\]
Substitution of \(y \) by 0 yields \(Q \vdash \psi(k_1, \ldots, k_n, 0) \), as desired. Similarly, when \(\neg P(k_1, \ldots, k_n) \) holds, we have
\[
Q \vdash \psi(k_1, \ldots, k_n, y) \leftrightarrow y = 1,
\]
and because \(Q \vdash \neg (0 = 1) \) we may conclude \(Q \vdash \neg \psi(k_1, \ldots, k_n, 0) \), as needed. Thus \(\psi \) is \(P \) representable.

Lemma 6. For a formula \(\varphi \) in \(\mathcal{L}_N \),
\[
Q \vdash \varphi_0^x \rightarrow \cdots \rightarrow (\varphi_{k-1}^x \rightarrow (x < k \rightarrow \varphi))
\]
Proof. The proof is by induction on \(k \). When \(k = 0 \), we have
\[
Q \vdash (x < 0 \rightarrow \varphi).
\]
This is (vacuously) true by axiom Q7. Now, assume that
\[
Q \vdash \varphi_0^x \rightarrow \cdots \rightarrow (\varphi_{k-1}^x \rightarrow (x < k \rightarrow \varphi)).
\]
We must show that
\[
Q \vdash \varphi_0^x \rightarrow \cdots \rightarrow (\varphi_k^x \rightarrow (x < k + 1 \rightarrow \varphi)).
\]
Equivalently, we want to show that \(\Gamma \vdash \varphi \) where \(\Gamma = Q \cup \{ \varphi_0^x, \ldots, \varphi_{k-1}^x, x < k + 1 \} \). By Q8, \(\Gamma \vdash x < k \lor x = k \). In the first case, the inductive hypothesis implies that \(\Gamma \vdash \varphi \), while in the latter case, \(\models x = k \rightarrow (\varphi_k^x \leftrightarrow \varphi) \), and hence \(\Gamma \vdash \varphi \). By either route, \(\Gamma \) proves \(\varphi \).

Lemma 7. If (a) \(Q \vdash \neg \varphi_z^x \) for each \(k < n \), and (b) \(Q \vdash \varphi_z^x \), then for \(z \neq x \) not appearing in \(\varphi \),
\[
Q \vdash (\varphi \land \forall z (z < x \rightarrow \neg \varphi_z^x)) \leftrightarrow x = n.
\]
Proof. We define
\[
\psi \equiv (\varphi \land \forall z (z < x \rightarrow \neg \varphi_z^x)).
\]
Now, we obtain
\[
\models x = n \rightarrow (\psi \leftrightarrow (\varphi_n^x \land \forall z (z < n \rightarrow \neg \varphi_z^x))). \tag{*}
\]
By (a) and Lemma 6, we get
\[
Q \vdash x < n \rightarrow \neg \varphi,
\]
and, applying substitution and generalization, we obtain
\[
Q \vdash \forall z (z < n \rightarrow \neg \varphi_z^x).
\]
Combining this with (b) and (\(\ast \)), we conclude
\[
Q \vdash x = n \rightarrow \psi.
\]
For the reverse implication, we note that
\[\forall z (z < x \to \neg \varphi^2_z) \to (n < x \to \neg \varphi^2_n), \]
and thus (b) implies \(Q \vdash \psi \to \neg (n < x) \). Now \(Q \cup \{ \psi, x < n \} \vdash \varphi \land \neg \varphi \) by (***) and the definition of \(\psi \). Therefore \(Q \vdash \psi \to \neg (x < n) \) and by Axiom Q9 we conclude \(Q \vdash \psi \to x = n \).

Representability Theorem. Every recursive function or relation is representable in \(Q \).

Proof. It suffices to prove representability of functions having the forms enumerated in the definition of recursiveness:

R1. \(I^n_x \), \(+, \cdot, \), and \(\chi < \).

The latter three are representable by Lemmas 2, 3, and 4. In particular, for \(+, \) say, we have that \(\varphi(x_1, x_2, y) \equiv y = x_1 + x_2 \) represents \(+ \) in \(Q \), since for any \(m, n \in \omega, \)
\[Q \vdash m + n = m + n, \]
\[Q \vdash y = m + n \iff y = m + n, \]
\[Q \vdash \varphi(m, n, y) \iff y = m + n, \]
as required.

\(I^n_x \) is representable by \(\varphi(x_1, \ldots, x_n, y) \equiv x_i = y \). In particular, for any \(k_1, \ldots, k_n \in \omega, I^n_i(k_1, \ldots, k_n) = k_i, \) and hence
\[Q \vdash \varphi(k_1, \ldots, k_n, y) \iff y = k_i \iff y = I^n_i(k_1, \ldots, k_n), \]
by our choice of \(\varphi \). Generalization completes the result.

R2. \(F(\bar{\pi}) = G(H_1(\bar{\pi}), \ldots, H_k(\bar{\pi})) \), where \(G \) and each of the \(H_i \) are representable.

Assume that \(G \) is represented in \(Q \) by \(\varphi \) and the \(H_i \) are represented in \(Q \) by \(\psi_i \), respectively. We show that \(F \) is represented by
\[\alpha(\bar{x}, y) \equiv \exists z_1, \ldots, z_k (\psi_1(\bar{x}, z_1) \land \cdots \land \psi_k(\bar{x}, z_k) \land \varphi(z_1, \ldots, z_k, y)). \]

In other word we want to show, for any \(a_1, \ldots, a_n \in \omega, \)
\[Q \vdash \alpha(a_1, \ldots, a_n, y) \iff y = G(H_1(\bar{\pi}), \ldots, H_k(\bar{\pi})) \quad (\dagger) \]
where \(\bar{\pi} = (a_1, \ldots, a_n) \).

Now, for \(\Gamma = Q \cup \{ \alpha(a_1, \ldots, a_n, y) \} \), since the \(\psi_i \) represent \(H_i \), we have that \(\Gamma \vdash \exists z_1, \ldots, z_k (z_1 = H_1(\bar{\pi}) \land \cdots \land z_k = H_k(\bar{\pi}) \land \varphi(z_1, \ldots, z_k, y)). \)

Hence we have
\[\Gamma \models \exists z_1, \ldots, z_k (\varphi(H_1(\bar{\pi}), \ldots, H_k(\bar{\pi}), y)), \]
and since the \(z_i \) do not appear,
\[\Gamma \models \varphi(H_1(\bar{\pi}), \ldots, H_k(\bar{\pi}), y). \]
Since \(\varphi \) represents \(G \), we have
\[\Gamma \models y = G(H_1(\bar{\pi}), \ldots, H_k(\bar{\pi})), \]
as required.
On the other hand, for $\Sigma = Q \cup \{ y = G(H_1(\bar{a}), \ldots, H_k(\bar{a})) \}$,
\[
\Sigma \vdash \varphi(H_1(\bar{y}), \ldots, H_k(\bar{y}), y)
\]
\[
\Sigma \vdash \exists z_1, \ldots, z_k (z_1 = H_1(\bar{y}) \land \cdots \land z_k = H_k(\bar{y}) \land \varphi(z_1, \ldots, z_k, y))
\]
\[
\Sigma \vdash \exists z_1, \ldots, z_k (\psi_1(\bar{y}, z_1) \land \cdots \land \psi_k(\bar{y}, z_k) \land \varphi(z_1, \ldots, z_k, y))
\]
\[
\Sigma \vdash \alpha_{a_1, \ldots, a_n, y}
\]
Thus (†) is established.

R3. $F(\bar{a}) = \mu x (G(\bar{a}, x) = 0)$, where G is representable in Q and for all a there exists x such that $G(\bar{a}, x) = 0$, is representable in Q.

Assume G is represented in Q by $\varphi(x_1, \ldots, x_n, x, y)$. Let
\[
\psi(x_1, \ldots, x_n, x) \equiv \varphi_0^y \land \forall z (z < x \to \neg \varphi_0^z).$

Let $F(\bar{a}) = b$ and $k_i = G(\bar{a}, i)$ for $i \in \omega$. Then
\[
Q \vdash \varphi(a_1, \ldots, a_n, i, y) \iff y = k_i,
\]
thus
\[
Q \vdash \varphi(a_1, \ldots, a_n, i, 0) \iff 0 = k_i.
\]
Hence now if $j < b$, so that $k_j \neq 0$, then
\[
Q \vdash \neg \varphi(a_1, \ldots, a_n, j, 0).
\]
On the other hand, $k_0 = 0$, so
\[
Q \vdash \varphi(a_1, \ldots, a_n, 0, 0).
\]
Hence, by Lemma 7,
\[
Q \vdash (\varphi(\bar{a}, x, y)^0 \land \forall z (z < x \to \neg \varphi(\bar{a}, x, y)^{0, z})) \iff x = b,
\]
and thus,
\[
Q \vdash \psi(\bar{a}, x) \iff x = b.
\]
By generalization, we have that ψ represents F in Q, as desired.

Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable language in such a way that important classes of formulas, e.g., the logical axioms, are mapped to recursive subsets of the natural numbers. We use this to derive the main result.

Definition. Let L be a countable language with subsets C, F, and P of constant, function, and predicate symbols, respectively ($= \in P$). Let V be a set of variables for L. L is called reasonable if the following two functions exist:

- $h : L \cup \{ \neg, \to, \forall \} \to \omega$ injective such that $\forall = h(\forall)$, $\neg = h(\neg)$, and $\to = h(\to)$ are all recursive.
- $AR : \omega \to \omega \setminus \{ 0 \}$ recursive such that $AR(h(f)) = n$ and $AR(h(P)) = n$ for n-ary function and predicate symbols f and P.

For the rest of this note, the language L is countable and reasonable.

Now we define a coding $[\cdot] : (L\text{-terms and } L\text{-formulas}) \to \omega$ inductively, by

- For $x \in V \cup C$, $[x] = <h(x)>$.
• For \mathcal{L}-terms u_1, \ldots, u_n and n-ary $f \in \mathcal{F}$,
 $$[fu_1u_2 \ldots u_n] = <h(f), [u_1], [u_2], \ldots, [u_n]>.$$
• For \mathcal{L}-terms t_1, \ldots, t_n and $P \in \mathcal{P}$,
 $$[Pt_1t_2 \ldots t_n] = <h(P), [t_1], \ldots, [t_n]>.$$
• For \mathcal{L}-formulas φ and ψ,
 $$[\varphi \rightarrow \psi] = <h(\rightarrow), [\varphi], [\psi]>, \quad [\neg \varphi] = <h(\neg), [\varphi]>, \quad [\forall x \varphi] = <h(\forall), [x], [\varphi]>.$$

Note that our definition of $[\cdot]$ is one-to-one. Given a term or formula σ, we call $[\sigma]$ the Gödel number of σ.

We show the following predicates and functions are recursive (We follow definitions for syntax in [E]):

1. $\text{Vble} = \{[v] \mid v \in \mathcal{V}\} \subseteq \omega$ and $\text{Const} = \{[c] \mid c \in \mathcal{C}\} \subseteq \omega$.

 Proof. Note
 $$\text{Vble}(x) \text{ iff } x = <(x)_1> \land \mathcal{P}(x)_1), \quad \text{Const}(x) \text{ iff } x = <(x)_1> \land \mathcal{C}(x)_1).$$

2. $\text{Term} = \{[t] \mid t \text{ an } \mathcal{L}\text{-term}\} \subseteq \omega$.

 Proof. Note
 $$\text{Term}(a) \text{ iff } \begin{cases} \forall j < (lh(a) - 1) \text{ Term}((a)_{j+2}) & \text{if } \text{Seq}(a) \land \mathcal{P}((a)_1) \\
 \land \text{AR}((a)_1) = lh(a) - 1, \\
 \text{Vble}(a) \lor \text{Const}(a) & \text{otherwise} \end{cases}$$

3. $\text{AtF} = \{[\sigma] \mid \sigma \text{ an atomic } \mathcal{L}\text{-formula}\} \subseteq \omega$.

 Proof. Note
 $$\text{AtF}(a) \text{ iff } \text{Seq}(a) \land \mathcal{P}((a)_1) \land (\text{AR}((a)_1) = lh(a) - 1) \land \forall j < (lh(a) - 1)(\text{Term}((a)_{j+2})).$$

4. $\text{Form} = \{[\varphi] \mid \varphi \text{ an } \mathcal{L}\text{-formula}\} \subseteq \omega$.

 Proof. Note
 $$\text{Form}(a) \text{ iff } \begin{cases} \text{Form}((a)_2) & \text{if } a = <h(\neg), (a)_2>, \\
 \text{Form}((a)_2) \land \text{Form}((a)_3) & \text{if } a = <h(\rightarrow), (a)_2, (a)_3>, \\
 \text{Vble}((a)_2) \land \text{Form}((a)_3) & \text{if } a = <h(\forall), (a)_2, (a)_3>, \\
 \text{AtF}(a) & \text{otherwise} \end{cases}$$

5. $\text{Sub} : \omega^3 \rightarrow \omega$, such that $\text{Sub}([t], [x], [u]) = [t'_{u}]$ and $\text{Sub}([\varphi], [x], [u]) = [\varphi'_{u}]$ for terms t and u, variable x, and formula φ.
\textbf{Proof.} Define

\[\text{Sub}(a, b, c) = \begin{cases}
 c & \text{if Vble}(a) \land a = b, \\
 \langle (a)_1, \text{Sub}((a)_2, b, c), \ldots \rangle & \text{if } lb(a) > 1 \land (a)_1 \neq h(\forall) \\
 \ldots, \text{Sub}((a)_{lb(a)}, b, c) > & \land \text{Seq}(a), \\
 \langle (a)_1, (a)_2, \text{Sub}((a)_3, b, c) \rangle & \text{if } a = \langle h(\forall), (a)_2, (a)_3 \rangle, \\
 (a) & \land (a)_2 \neq b \\
 \text{otherwise}. &
\end{cases} \]

Note that, if well-defined, the function has the properties desired above.

We show \text{Sub} is well-defined by induction on \(a \): \(a = 0 \) falls into the first or last category since \(lb(0) = 0 \), hence \(\text{Sub}(0, b, c) \) is well-defined for all \(b, c \in \omega \). If \(a \neq 0 \), then \((a)_i < a \) for all \(i \leq lb(a) \), and thus we may assume the values \(\text{Sub}((a)_i, b, c) \) are well-defined, showing \(\text{Sub}(a, b, c) \) to be well-defined in all cases.

(6) \(\text{Free} \subseteq \omega^2 \) such that for formula \(\varphi \), term \(\tau \), and variable \(x \), \(\text{Free}(\lfloor \varphi \rfloor, \lfloor x \rfloor) \) if and only if \(x \) occurs free in \(\varphi \), and \(\text{Free}(\lfloor \tau \rfloor, \lfloor x \rfloor) \) if and only if \(x \) occurs in \(\tau \).

\textbf{Proof.} Define

\[\text{Free}(a, b) \iff \begin{cases}
 \exists j < (lb(a) - 1) (\text{Free}((a)_{j+2}, b)) & \text{if } lb(a) > 1 \land (a)_1 \neq h(\forall), \\
 \text{Free}((a)_3, b) \land (a)_2 \neq b & \text{if } lb(a) > 1 \land (a)_1 = h(\forall), \\
 a = b & \text{otherwise}.
\end{cases} \]

\(\text{Free} \) clearly has the desired property, and that it is well-defined follows by essentially the same induction on \(a \) as above.

(7) \(\text{Sent} = \{ \lfloor \varphi \rfloor \mid \varphi \text{ is an } \mathcal{L}\text{-sentence} \} \subseteq \omega \).

\textbf{Proof.} Note

\(\text{Sent}(a) \iff \text{Form}(a) \land \forall b < a (\neg \text{Vble}(b) \lor \neg \text{Free}(a, b)). \)

(8) \(\text{Subst}(a, b, c) \subseteq \omega^3 \) such that for a given formula \(\varphi \), variable \(x \), and term \(t \), \(\text{Subst}(\lfloor \varphi \rfloor, \lfloor x \rfloor, \lfloor t \rfloor) \) if and only if \(t \) is substitutable for \(x \) in \(\varphi \).

\textbf{Proof.} Define

\[\text{Subst}(a, b, c) \iff \begin{cases}
 \text{Subst}((a)_2, b, c) & \text{if } a = \langle h(\neg), (a)_2 \rangle, \\
 \text{Subst}((a)_2, b, c) \land \text{Subst}((a)_3, b, c) & \text{if } a = \langle h(\rightarrow), (a)_2, (a)_3 \rangle, \\
 \neg \text{Free}(a, b) \lor (\neg \text{Free}(c, (a)_2) & \text{if } a = \langle h(\forall), (a)_2, (a)_3 \rangle, \\
 \land \text{Subst}((a)_3, b, c) \rangle & \\
 0 = 0 & \text{otherwise}.
\end{cases} \]

Note that \(\text{Subst} \) has the desired property, and is well-defined by essentially the same induction used above.
We define
\[
\text{False}(a,b) \iff \begin{cases}
\neg \text{False}((a),2,b) \land \text{False}((a),3,b) & \text{if } a = h(\land), (a),2,(a),3 > \\
\text{False}((a),2,b) & \text{if } a = h(\lor), (a),2 > \land \text{Form}(a),2, \\
\text{Form}(a) \land (b)_a = 0 & \text{otherwise}.
\end{cases}
\]

False is recursive by the same induction as applied above. We note the significance of False presently.

To each \(b \in \omega \), we may associate a truth assignment \(v_b \) such that for a prime formula \(\psi \) (atomic or of the form \(\forall x \varphi \)),
\[
v_b(\psi) = F \iff (b)[\psi] = 0.
\]

Further, for any truth assignment \(v : A \to \{T,F\} \), where \(A \) is a finite set of prime formulas, there exists a \(b \) such that \(v = v_b \): we may write \(A = \{\varphi_1, \ldots, \varphi_n\} \) such that \([\varphi_1] < [\varphi_2] < \cdots < [\varphi_n] \). For \(1 \leq j \leq [\varphi_n] \) define \(c_j = 0 \) when \(j = [\varphi_i] \) for some \(i \leq n \) and \(v(\varphi_i) = F \), and \(c_j = 1 \) otherwise. Then \(b = <c_1, \ldots, c_{[\varphi_n]} \rangle \) satisfies \(v_b = v \) on \(A \).

Then moreover, for any formula \(\varphi \) built up from \(A \),
\[
\varphi(\bar{\varphi}) = F \iff \varphi(b)[\varphi] = False([\varphi], b).
\]

(10) Define \(\text{Taut} = \{[\sigma] \mid \sigma \text{ is a tautology} \} \subseteq \omega \).

Proof. Recall \(bd : \omega \to \omega \) such that \(bd(a) = \max\{<c_1, \ldots, c_a > \mid c_i \in \{0,1\}\} \), recursive, has been previously defined. Define
\[
\text{Taut}(a) \iff \text{Form}(a) \land \forall b < (bd(a) + 1) (\neg \text{False}(a,b)).
\]

(11) \(\text{AG}_2 = \{[\varphi] \mid \varphi \text{ is in axiom group 2} \} \subseteq \omega \).

Proof. Recall axiom group 2 contains formulas of the form \(\forall x \psi \to \psi^x_t \), with term \(t \) substitutable for \(x \) in \(\psi \). Thus
\[
\text{AG}_2(a) \iff \exists x, y, z < a (\text{Vble}(x) \land \text{Form}(y) \land \text{Term}(z) \land \text{Subst}(y, x, z)
\land \ a = <h(\land), <h(\forall), x, y >, \text{Sub}(y, x, z) >),
\]
where \(\exists x, y, z < a P(x, y, z) \) abbreviates what one would expect.

(12) \(\text{AG}_3 = \{[\varphi] \mid \varphi \text{ is in axiom group 3} \} \subseteq \omega \).

Proof. Recall we take axiom group 3 to be the formulas having the following form: \(\forall x(\psi \to \psi') \to (\forall x \psi \to \forall x \psi') \). Thus
\[
\text{AG}_3(a) \iff \exists x, y, z < a (\text{Vble}(x) \land \text{Form}(y) \land \text{Form}(z)
\land \ a = <h(\land), <h(\forall), x, <h(\neg), y, z >),
\land \ a = <h(\land), <h(\forall), x, <h(\neg), y, z >, <h(\forall), x, z >>)\)
\]

(13) \(\text{AG}_4 = \{[\varphi] \mid \varphi \text{ is in axiom group 4} \} \subseteq \omega \).
Proof. Recall axiom group 4 contains formulas of the form \(\psi \rightarrow \forall x \psi \), where \(x \) does not occur free in \(\psi \). Thus

\[
\text{AG4}(a) \iff \exists x,y < a \ (\text{Vble}(x) \land \text{Form}(y)) \\
\land \neg \text{Free}(y,x) \land a = <h(\rightarrow), y, <h(\forall), x, y>>
\]

(14) \(\text{AG5} = \{[\varphi] \mid \varphi \text{ is in axiom group 5}\} \subseteq \omega \).

Proof. Recall axiom group 5 contains formulas of the form \(x = x \), for a variable \(x \), hence

\[
\text{AG5}(a) \iff \exists x < a \ (\text{Vble}(x) \land a = <h(=), x, x>).
\]

(15) \(\text{AG6} = \{[\varphi] \mid \varphi \text{ is in axiom group 6}\} \subseteq \omega \).

Proof. Recall formulas of axiom group 6 have the form \(\psi \rightarrow (\psi \rightarrow \psi') \), where \(\psi \) is an atomic formula of the form \(Pz_1 \cdots z_k \) or \(f(z_1 \cdots z_k) = f_w1 \cdots w_k \), and \(\psi' \) is obtained by from \(\psi \) by replacing some number of occurrences of \(x \) with \(y \). Thus

\[
\text{AG6}(a) \iff \exists x,y,b,c < a \ (\text{Vble}(x) \land \text{Vble}(y) \land \text{AtF}(b) \land \text{AtF}(c) \land lh(b) = lh(c) \land (b)_1 = (c)_1 \in \mathbb{P} \land [2 \leq \forall j \leq lh(b) ((b)_j = (c)_j \in \text{Vble} \lor ((c)_j = y \land (b)_j = x))] \\
\lor [lh(b) = lh(c) = 3 \land ((c)_j = (b)_j = h(=) \land ((b)_1 = ((c)_2)_1 = ((c)_3)_1 = ((b)_3)_1 \in \mathbb{P} \land 2 \leq \forall j \leq lh(b)_2 \forall i \in \{2,3\} (((b)_1)_j = ((c)_1)_j \in \text{Vble} \lor (((c)_1)_j = y \land ((b)_1)_j = x))] \\
\land a = <h(\rightarrow), <h(=), x, y>, <h(\rightarrow), b, c>>).
\]

(16) \(\text{Gen}(a, b) \subseteq \omega^2 \), such that \(\text{Gen}([\varphi], [\psi]) \) if and only if \(\varphi \) is a generalization of \(\psi \) (i.e., \(\varphi = \forall x_1 \ldots \forall x_n \psi \) for some finite \(\{x_i\} \subseteq \mathcal{V} \)).

Proof. Note that

\[
\text{Gen}(a, b) \iff \begin{cases} a = <h(\forall), (a)_2, (a)_3> \land \text{Vble}((a)_2) \land \text{Gen}((a)_3, b) & \text{if } a > b, \\ 0 = 0 & \text{if } a = b, \\ 0 = 1 & \text{if } a < b.
\end{cases}
\]

(17) \(\Delta = \{[\sigma] \mid \sigma \in \Lambda\} \subseteq \omega \), where \(\Lambda \) is the set of logical axioms.

Proof. Note that

\[
\Delta(a) \iff \exists b < a + 1 \ (\text{Form}(a) \land \text{Gen}(a, b) \\
\land (\text{Taut}(b) \lor \text{AG2}(b) \lor \text{AG3}(b) \lor \text{AG4}(b) \lor \text{AG5}(b) \lor \text{AG6}(b)))
\]

\(^1\text{This part is corrected from the previous version by Jaemin Park, an undergraduate student of 2015 fall semester class. The corresponding logical axiom group (6) and the Equality Theorem (4) in Mathematical Logic Class note are appropriately altered as well. If the reader is fully convinced (without looking at the detail) that \text{AG6} is recursive, then this part can be skipped.}
We have, to this point, defined three codings: $\langle \rangle$ on sequences of natural numbers, h on the language and logical symbols, and $\lceil \rceil$ on the terms and formulas. We presently define a fourth coding, of sequences of formulas:

$\lceil \lceil \rceil \rceil : \{ \text{sequences of } L\text{-formulas} \} \rightarrow \omega,$

given by

$\lceil \lceil \varphi_1, \ldots, \varphi_n \rceil \rceil = < \lceil \varphi_1 \rceil, \ldots, \lceil \varphi_n \rceil > .$

This map is one-to-one, as it is derived from the established (injective) codings, and in particular, we can determine, for a given number, if it lies in the image of $\lceil \lceil \rceil \rceil$, and, if so, recover the associated sequence of formulas.

Definition. Given L, let T be a theory (a collection of sentences) in L. Define $T = \{ \lceil \sigma \rceil | \sigma \in T \}$.

We say that T is **axiomatizable** if there exists a theory S, axiomatizing T (that is, such that $\text{Cn} \ S = \text{Cn} \ T$), such that S is recursive. We say that T is **decidable** if $\text{Cn} \ T$ is recursive.

We shall make use of the following relations:

- $\text{Ded}_T \subseteq \omega$, given by $\text{Ded}_T(a) \iff \text{Seq}(a) \land \text{lh}(a) \neq 0 \land \forall j < \text{lh}(a) (\Delta((a)_{j+1}) \lor \exists k < j+1 ((a)_{k+1} = <h(\neg), (a)_{i+1}, (a)_{j+1} >))$

- $\text{Prf}_T \subseteq \omega^2$, given by $\text{Prf}_T(a,b) \iff \text{Ded}_T(b) \land a = (b)_{\text{lh}(b)}$.

- $\text{Pf}_T \subseteq \omega$, given by $\text{Pf}_T(a) \iff \text{Sent}(a) \land \exists x \text{Prf}_T(a,x)$.

Note that we may read $\text{Prf}_T(a,b)$ as "b is a proof of a from T," and $\text{Pf}_T(a)$ as "a is a sentence provable from T." In particular

$\text{Pf}_T = \text{Cn} \ T = \{ \lceil \sigma \rceil | T \vdash \sigma \}.$

We use this fact to prove the following:

Theorem. If T is axiomatizable, then $\text{Pf}_T = \text{Cn} \ T$ is recursively enumerable.

Proof. Let S axiomatize T, where S is recursive. From the above definitions, we see that Ded_S and Prf_S are recursive relations, hence Pf_S is an r.e. relation. But $\text{Pf}_S = \text{Pf}_T$, since $\text{Cn} \ S = \text{Cn} \ T$.

Theorem. If T is axiomatizable and complete in L, then T is decidable.

Proof. By the negation theorem, it suffices to show that $\neg \text{Pf}_T$ is recursively enumerable. Note that since T is complete, for any sentence σ, $T \vdash \neg \sigma$ if and only if $T \not\vdash \sigma$. Hence

$\neg \text{Pf}_T(a) \iff \neg \text{Sent}(a) \lor \exists m \text{Prf}_T(<h(\neg), a>, m)$

iff $\exists m (\neg \text{Sent}(a) \lor \text{Prf}_T(<h(\neg), a>, m))$.

Thus $\neg \text{Pf}_T$ is recursively enumerable, and Pf_T is recursive.

We can see that if we say T is axiomatizable in wider sense when S axiomatizing T is recursively enumerable, then the above two theorems still hold with this seemingly weaker notion. In fact, two notions are equivalent, which is known as Craig’s Theorem.
Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, \mathcal{L}_N. Recall that we define, for a natural number n,

$$n \equiv S^n S 0\,$$

Definition. The diagonalization of an \mathcal{L}_N formula φ is a new formula

$$d(\varphi) \equiv \varphi^{v_0}.$$

Lemma. There exist recursive functions $\text{num} : \omega \rightarrow \omega$ and $\text{dg} : \omega \rightarrow \omega$ such that respectively,

$$\text{num}(n) = \lceil n \rceil,$$

and for any \mathcal{L}_N formula φ,

$$\text{dg}(\lceil \varphi \rceil) = \lceil d(\varphi) \rceil.$$

Proof. Let $\text{num}(0) = <h(0)>$ and, for $n \in \omega$ we let

$$\text{num}(n + 1) = <\text{Sub}(\text{num}(n)) >.$$

Then it follows $\text{num}(n) = \lceil n \rceil$.

Define

$$\text{dg}(a) = \text{Sub}(a, [v_0], \text{num}(a)),$$

where $\text{Sub} : \omega^3 \rightarrow \omega$ is introduced in Step 2, (5). Then

$$\text{dg}(\lceil \varphi \rceil) = \text{Sub}(\lceil \varphi \rceil, [v_0], \lceil [\varphi] \rceil) = \lceil d(\varphi) \rceil,$$

as wanted.

Fixed Point Theorem (Gödel). For any \mathcal{L}_N-formula $\varphi(x)$ (i.e., either a sentence or a formula having x as the only free variable), there is some \mathcal{L}_N-sentence σ such that

$$Q \vdash \sigma \iff \varphi([\sigma]).$$

Proof. Since dg is recursive, it is representable in Q by Step 1, say by $\psi(x, y)$. Then

$$Q \vdash \forall y(\psi(n, y) \iff y = \text{dg}(n)).$$

Let $\delta(v_0) \equiv \exists y(\psi(v_0, y) \land \varphi(y))$, and let $n = [\delta(v_0)]$. Define

$$\sigma \equiv d(\delta(v_0)) \equiv \exists y(\psi(n, y) \land \varphi(y)).$$

Now we let $k = \text{dg}(n) = \text{dg}([\delta(v_0)]) = [\sigma]$, then

$$Q \vdash \psi(n, y) \iff y = k.$$

Therefore

$$Q \vdash \sigma \iff \exists y(y = k \land \varphi(y)) \iff \varphi(k) \iff \varphi([\sigma]),$$

as required.

Tarski Undefinability Theorem. $\text{Th}_N = \{ [\sigma] \mid N \models \sigma \}$ is not definable.
Proof. Suppose Th_N is definable by $\beta(x)$. Then by the fixed point lemma, with $\varphi = \neg \beta$, there exists a sentence σ such that

$$N \models \sigma \iff \neg \beta([\sigma]).$$

Then $N \models \sigma$ implies that $N \not\models \beta([\sigma])$, implying $N \not\models \sigma$, or $N \models \neg \sigma$, since Th_N is complete. On the other hand, $N \not\models \sigma$ implies $N \models \neg \sigma$, and thus that $N \models \beta([\sigma])$, implying $N \models \sigma$. The contradictions together imply that β cannot define Th_N.

Strong Undecidability of Q. Let T be a theory in $\mathcal{L} \supseteq \mathcal{L}_N$. If $T \cup Q$ is consistent in \mathcal{L}, then T is not decidable in \mathcal{L} ($\text{Cn}(T)$ is not recursive).

Proof. Assume that $\text{Cn}(T)$ is recursive. We first show that this implies recursiveness of $\text{Cn}(T \cup Q)$. Since Q is finite, it suffices to show that for any sentence τ in the language, $\text{Cn}(T \cup \{\tau\})$ is recursive.

In particular, note that $\alpha \in \text{Cn}(T \cup \{\tau\})$ iff $\tau \rightarrow \alpha \in \text{Cn}(T)$. Thus

$$a \in \text{Cn}(T \cup \{\tau\}) \iff \text{Sent}(a) \land <h(\rightarrow), [\tau], a> \in \text{Cn}(T).$$

Hence $\text{Cn}(T \cup \{\tau\})$ is recursive, as desired.

To prove the theorem, then, it suffices to show that $\text{Cn}(T \cup Q)$ is not recursive. If this were the case, then it would be representable, say by $\beta(x)$, in Q. By the fixed point lemma, there exists an \mathcal{L}_N sentence σ such that

$$Q \models \sigma \iff \neg \beta([\sigma]).$$

If $T \cup Q \models \sigma$, then

$$Q \models \beta([\sigma]),$$

by the representability of $\text{Cn}(T \cup Q)$ by $\beta(x)$ in Q. In particular,

$$Q \models \neg \sigma,$$

a contradiction. On the other hand, if $T \cup Q \not\models \sigma$, then by representability,

$$Q \models \neg \beta([\sigma]),$$

and hence

$$Q \models \sigma,$$

a contradiction, implying that $\text{Cn}(T \cup Q)$ is not representable, and hence not recursive.

Corollary. Th_N, PA, and Q are all undecidable.

Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:

Undecidability of First Order Logic (Church). For a reasonable countable language $\mathcal{L} \supseteq \mathcal{L}_N$, the set of all Gödel numbers of valid sentences ($\{[\sigma] \mid \emptyset \models \sigma\}$) is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable \mathcal{L} containing a k-ary predicate or function symbol, $k \geq 2$, or at least two unary function symbols.

Gödel-Rosser First Incompleteness Theorem. If T is a theory in a countable reasonable $\mathcal{L} \supseteq \mathcal{L}_N$, with $T \cup Q$ consistent and T axiomatizable, then T is not complete.
Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong
undecidability of Q.

Remarks. In $(\mathbb{N}, +, 0, <, S)$ are definable. Hence the same result follows if we
take $\mathcal{L}_N' = \{+, \cdot\}$ instead of our usual \mathcal{L}_N. In particular, $\text{Th}(\mathbb{N}, +, \cdot)$ is undecidable, and for any $T' \supseteq Q'$ (where Q' is simply Q written in the language of \mathcal{L}_N'), we have
that T' is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T, we may have $T \subseteq T'$, where T' is a decidable theory. As an example, the theory of groups is undecidable,
whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in G"odel's original
paper. In particular, G"odel worked in the model $(\mathbb{N}, +, \cdot, 0, <, E)$. (Note that
E, exponentiation, is definable in $(\mathbb{N}, +, \cdot, 0, <)$, or, equivalently, $(\mathbb{N}, +, \cdot)$).

Let $T \supseteq Q$ be a consistent theory in a reasonable countable language
$L \supseteq L_N$, and presume that T is recursive. Then

$$T \vdash \sigma \Rightarrow Q \vdash \text{Prf}_T(\lceil \sigma \rceil).$$

In particular, $T \vdash \sigma$ implies that $\text{Prf}_T(\lceil \sigma \rceil, m)$ for some $m \in \omega$. Since Prf_T is
recursive, it is representable in Q, hence $Q \vdash \exists x \text{Prf}_T(\lceil \sigma \rceil, x)$,
or

$$Q \vdash \text{Prf}_T(\lceil \sigma \rceil).$$

By the fixed point lemma, there exists a sentence α such that

$$T \supseteq Q \vdash \alpha \iff \neg \text{Prf}_T(\lceil \alpha \rceil), \quad (\ast)$$

If $T \vdash \alpha$, then $Q \vdash \text{Prf}_T(\lceil \alpha \rceil)$, and thus $Q \vdash \neg \alpha$, and hence $T \vdash \neg \alpha$, a contradiction. Thus $T \not\vdash \alpha$.

On the other hand, if T is ω-consistent (i.e., whenever $T \vdash \exists x \varphi(x)$, then for
some $n \in \omega, T \not\vdash \neg \varphi(n)$), then $T \not\vdash \neg \alpha$. In particular, if $T \vdash \neg \alpha$, then

$$T \vdash \text{Prf}_T(\lceil \alpha \rceil),$$

by (\ast). That is,

$$T \vdash \exists x \text{Prf}_T(\lceil \alpha \rceil, x).$$

However, if $\text{Prf}_T(\lceil \alpha \rceil, m)$ for some $m \in \omega$, then $T \vdash \alpha$, contradicting the consistency of T. Thus we must have $\neg \text{Prf}_T(\lceil \alpha \rceil, m)$ for all $m \in \omega$. Since Q represents Prf_T,

$$T \supseteq Q \vdash \neg \text{Prf}_T(\lceil \alpha \rceil, m)$$

for all $m \in \omega$, contradicting the ω-consistency of T.

Rosser generalized G"odel's proof by singling out for T a sentence α such that
$T \not\vdash \alpha$ and $T \not\vdash \neg \alpha$, without the assumption of ω-consistency.

We now begin our approach to G"odel's Second Incompleteness Theorem. We fix
T, a theory in a countable reasonable language $\mathcal{L} \supseteq \mathcal{L}_N$.

We note the following fact from Hilbert and Bernays' *Grundlagen der Mathematik*, 1934.
Fact. If T is consistent, $T \vdash PA$, and T is recursive, then for any sentences σ and δ in L,

I. $T \vdash \sigma \Rightarrow Q \vdash Pf_T([\sigma])$

II. $PA \vdash (Pf_T([\sigma]) \land Pf_T([\sigma \rightarrow \delta])) \Rightarrow Pf_T([\delta])$

III. $PA \vdash Pf_T([\sigma]) \Rightarrow Pf_T([Pf_T([\sigma])])$

Notation. We will write $\text{Con}_T \equiv \neg Pf_T([0 \neq 0])$. Clearly Con_T holds if and only if T is consistent.

Lemma. If $T \vdash \sigma \rightarrow \delta$, then $PA \vdash Pf_T([\sigma]) \rightarrow Pf_T([\delta])$.

Proof. If $T \vdash \sigma \rightarrow \delta$, then by (I) above,

$$PA \vdash Pf_T([\sigma \rightarrow \delta]),$$

and by (II),

$$PA \vdash Pf_T([\sigma]) \rightarrow Pf_T([\delta]).$$

Gödel’s Second Incompleteness Theorem. If T is consistent, T is recursive, and $T \vdash PA$, then $T \not\vdash \text{Con}_T$.

Proof. By the fixed point lemma, there exists σ such that

$$Q \vdash \sigma \iff \neg Pf_T([\sigma]). \quad (\dagger)$$

By (III) above,

$$PA \vdash Pf_T([\sigma]) \Rightarrow Pf_T([Pf_T([\sigma])]). \quad (\ddagger)$$

And further, by Lemma, we have

$$PA \vdash Pf_T([Pf_T([\sigma])]) \Rightarrow Pf_T([\neg \sigma]).$$

Combining this result with (\ddagger), we have

$$PA \vdash Pf_T([\sigma]) \Rightarrow Pf_T([\neg \sigma]).$$

Now note that $\vdash \neg \sigma \iff (\sigma \rightarrow (0 \neq 0))$. By the lemma,

$$PA \vdash Pf_T([\sigma]) \rightarrow Pf_T([\sigma \rightarrow (0 \neq 0)]).$$

In particular,

$$PA \vdash Pf_T([\sigma]) \rightarrow Pf_T([\sigma]) \land Pf_T([\sigma \rightarrow (0 \neq 0)]),$$

hence, by (II),

$$PA \vdash Pf_T([\sigma]) \rightarrow Pf_T([0 \neq 0]),$$

i.e.

$$PA \vdash Pf_T([\sigma]) \rightarrow \neg \text{Con}_T.$$

Thus $PA \vdash \text{Con}_T \rightarrow \sigma$, by (\dagger).

Now, suppose that $T \vdash \text{Con}_T$. Then $T \vdash \sigma$, and hence by (I), $T \supseteq Q \vdash Pf_T([\sigma])$. But again, by (\dagger), this implies that $T \vdash \neg \sigma$, a contradiction, showing that T cannot prove its own consistency.

We remark that one may carry the proof through using only the assumption that T is recursively enumerable.
Löb’s Theorem. Suppose T is a consistent theory in $\mathcal{L} \supseteq \mathcal{L}_N$, such that T recursive, and $T \vdash PA$. Then for any \mathcal{L}-sentence σ, if $T \vdash Pf_T(\lceil \sigma \rceil) \rightarrow \sigma$, then $T \vdash \sigma$.

Proof. By the fixed point lemma, there exists δ such that

$$Q \vdash \delta \iff (Pf_T(\lceil \delta \rceil) \rightarrow \sigma).$$

Since $T \vdash PA \supseteq Q$, T proves the same result. From this we may deduce that

$$PA \vdash Pf_T(\lceil \delta \rceil) \rightarrow Pf_T(\lceil \sigma \rceil).$$

In particular, by our lemma, we have

$$PA \vdash Pf_T(\lceil \delta \rceil) \rightarrow Pf_T \left(\left \lceil Pf_T(\lceil \delta \rceil) \rightarrow \sigma \right \rceil \right),$$

and, combining this with (III) from above,

$$PA \vdash Pf_T(\lceil \delta \rceil) \rightarrow Pf_T \left(\left \lceil Pf_T(\lceil \delta \rceil) \rightarrow \sigma \right \rceil \right) \land Pf_T \left(\left \lceil Pf_T(\lceil \delta \rceil) \rightarrow \sigma \right \rceil \right),$$

and thus, by (II),

$$PA \vdash Pf_T(\lceil \delta \rceil) \rightarrow Pf_T(\lceil \sigma \rceil),$$

as desired.

Now assume that $T \vdash Pf_T(\lceil \sigma \rceil) \rightarrow \sigma$. Then, by the above,

$$T \vdash Pf_T(\lceil \delta \rceil) \rightarrow \sigma.$$

By our choice of δ, this in turn implies that $T \vdash \delta$. By (I), we have that $Q \vdash Pf_T(\lceil \delta \rceil)$, and hence T proves the same result, implying that $T \vdash \sigma$, as desired.

Remark. Gödel’s Second Incompleteness Theorem in fact follows from Löb’s Theorem. In particular, given T as in the hypotheses of both theorems, if $T \vdash \text{Con}_T$, then

$$T \vdash Pf_T([0 \neq 0]) \rightarrow 0 \neq 0.$$

But by Löb’s Theorem, this in turn implies that $T \vdash 0 \neq 0$, showing that such a theory, if consistent, cannot prove its own consistency.

References

[BJ] G. S. Boolos and R. C. Jeffrey, *Computability and logic*.

